The disturbance of a supersaturated solution will cause precipitation. A supersaturated solution is a solution that contains more solute than the solvent can dissolve. When this type of solution is disturbed like when it is moved, the formation of a solid is observed immediately.
Answer:
Covalent
Explanation:
A molecule of C₂H₅OH has C-C, C-H, C-O, and O-H bonds.
A bond between A and B will be ionic if the difference between their electronegativities (ΔEN) is greater than 1.6.

No bond has a large enough ΔEN to be ionic.
C₂H₅OH is a covalent molecule.
Explanation:
Since pressure remained constant, we can eliminate P from the equation

Doing some algebra and converting temperature to Kevin by adding 273, you should obtain the same result.
Answer:
Hg2^2+(aq) + 2Cl^-(aq) —> Hg2Cl2(s)
Explanation:
The balanced equation for the reaction is given below:
2NaCl(aq) + Hg2(NO3)2(aq) —> 2NaNO3(aq) + Hg2Cl2(s)
Considering the states of each compound in the reaction, we can see that Hg2Cl2 is in solid form meaning it will precipitate out of the solution
In solution the following occurs:
NaCl —> Na+(aq) + Cl-(aq)
Hg2(NO3)2 —> Hg2^2+(aq) + 2NO3^-(aq)
Combining the two equation together, a balanced double displacement reaction occurs as shown below:
2Na+(aq) + 2Cl-(aq) + Hg2^2+(aq) + 2NO3^-(aq) —> 2Na+2NO3^-(aq) + Hg2^2+2Cl-(s)
From the above we can thus right the insoluble precipitate as
Hg2^2+(aq) + 2Cl^-(aq) —> Hg2Cl2(s)
Deuterium also called heavy hydrogen, isotope of hydrogen with a nucleus consisting of one proton and one neutron, which is double the mass of the nucleus of ordinary hydrogen (one proton).
The deuterium atom is widely used in prototype fusion reactors.