Answer : The number of iron atoms present in each red blood cell are, 
Explanation :
First we have to calculate the moles of iron.

Now we have to calculate the number of iron atoms.
As, 1 mole of iron contains
number of iron atoms
So, 0.0519 mole of iron contains
number of iron atoms
Now we have to calculate the number of iron atoms are present in each red blood cell.
Number of iron atoms are present in each red blood cell = 
Number of iron atoms are present in each red blood cell = 
Number of iron atoms are present in each red blood cell = 
Therefore, the number of iron atoms present in each red blood cell are, 
+5
Explanation:
The given radical is PO₄³⁻
To solve this problem, we need to understand what oxidation number entails.
The extent of the oxidation of each atom is expressed by the oxidation number.
Here are some rules for assigning them:
- Elements in an uncombined state or elements that combines with one another, their oxidation number is zero.
- The charge on an ion is its oxidation number
- In an neutral compound, algebraic sum of all the oxidation numbers of all atoms is zero.
- In a radical, the algebraic sum of all the oxidation numbers of the ions is equal to the charge on them.
Oxygen is known to have an oxidation number of -2;
PO₄³⁻
P + 4(-2) = -3
P -8 = -3
P = -3 + 8 = +5
The charge on phosphorus is +5
learn more:
Oxidation number brainly.com/question/2086855
#learnwithbrainly
The compound
will have a triple bond.
Explanation:
A compound which consists of carbon and hydrogen atoms is known as a hydrocarbon.
Alkanes, alkenes and alkynes are all hydrocarbons.
- General chemical formula of an alkane is
. In an alkane molecule, all the atoms will be bonded through single bonds.
For example,
is propane.
- General chemical formula of an alkene is
. An alkene molecule will have atleast one double bond between two carbon atoms.
For example,
is ethene.
- General chemical formula of an alkyne is
. An alkyne will have atleast one triple bond between two carbon atoms.
For example,
is propyne.
Thus, we can conclude that out of the given options
will have a triple bond.
It can uplift slowly due to the pressure of Earth’s plates.
It can melt into magma and recrystallize as extrusive igneous rock.