Precipitation calculations with Ni²⁺ and Pb²⁺ a. Use the solubility product for Ni(OH)₂ (s) . the pH at which Ni(OH)₂ begins to precipitate from a 0.18 M Ni²⁺ solution. (Ksp Ni(OH)₂ = 5.5x10⁻¹⁶) is 6.8.
When Ni(OH)₂ starts precipitate :
Ksp of Ni(OH)₂ = [ Ni²⁺ ] [ OH²⁻ ]
5.5x10⁻¹⁶ = [ 0.18 ] [ OH²⁻ ]
[ OH²⁻ ] = 5.5x10⁻¹⁶ / 0.18
[ OH⁻ ] = 5.5 × 10⁻⁸ M
pOH = 7.2
therefore , pH = 14 - 7.2
pH = 6.8
Thus, Precipitation calculations with Ni²⁺ and Pb²⁺ a. Use the solubility product for Ni(OH)₂ (s) . the pH at which Ni(OH)₂ begins to precipitate from a 0.18 M Ni²⁺ solution. (Ksp Ni(OH)₂ = 5.5x10⁻¹⁶) is 6.8.
To learn more about pH here
brainly.com/question/15289741
#SPJ1
H• •Be• •H --> H:Be:H
Since there are 4 valence electrons in total, Beryllium has 2 and Hydrogen has 2. You would put the Be in the middle because there is only 1 of them.
Answer:Well, if you mean atoms, it has 2 Hydrogen atoms and 1 Oxygen.
Explanation:Water is H20 therefore, it has 2 Hydrogen atoms and 1 Oxygen. Water isn't made up of particles, they are made of atoms.
Answer:
Water and Salt
Explanation:
A neutralization reaction occurs when an acid and a base react to produce water and a salt, and it entails the formation of water from the mixture of H+ and OH- ions.
Answer:
E. All of the above are true.
Explanation:
<em>Which of the following statements is TRUE?</em>
<em>A. State functions do not depend on the path taken to arrive at a particular state.</em> TRUE. State functions like enthalpy (ΔH) and internal energy (ΔE) do not depend on the trajectory, but on the initial and final state.
<em>B. Energy is neither created nor destroyed, excluding nuclear reactions.</em> TRUE. Only in nuclear reactions can energy (E) can be transformed in matter (m) and vice-versa according to Einstein equation: E = m . c² (c is the speed of light).
<em>C. ΔHrx can be determined using constant pressure calorimetry.</em> TRUE. The enthalpy of reaction is the heat involved at constant pressure.
<em>D. ΔErx can be determined using constant volume calorimetry.</em> TRUE. The internal energy of reaction is the heat involved at constant volume.