Cost = (0.001) x (the wattage of the light) x (the number of hours it's left on) x (the cost of each kilowatt-hour of electrical energy where you live).
Answer:
A) 21.2 kg.m/s at 39.5 degrees from the x-axis
Explanation:
Mass of the smaller piece = 200g = 200/1000 = 0.2 kg
Mass of the bigger piece = 300g = 300/1000 = 0.3 kg
Velocity of the small piece = 82 m/s
Velocity of the bigger piece = 45 m/s
Final momentum of smaller piece = 0.2 × 82 = 16.4 kg.m/s
Final momentum of bigger piece = 0.3 × 45 = 13.5 kg.m/s
since they acted at 90oc to each other (x and y axis) and also momentum is vector quantity; then we can use Pythagoras theorems
Resultant momentum² = 16.4² + 13.5² = 451.21
Resultant momentum = √451.21 = 21.2 kg.m/s at angle 39.5 degrees to the x-axis ( tan^-1 (13.5 / 16.4)
Answer:
ididate is a good one and
Hello!
Let's begin by doing a summation of torques, placing the pivot point at the attachment point of the rod to the wall.

We have two torques acting on the rod:
- Force of gravity at the center of mass (d = 0.700 m)
- VERTICAL component of the tension at a distance of 'L' (L = 2.200 m)
Both of these act in opposite directions. Let's use the equation for torque:

Doing the summation using their respective lever arms:


Our unknown is 'theta' - the angle the string forms with the rod. Let's use right triangle trig to solve:

Now, let's solve for 'T'.

Plugging in the values:
