An apple falling to the ground is not an example of centripetal acceleration.
To solve this problem we will apply the principles of energy conservation. On the one hand we have that the work done by the non-conservative force is equivalent to -30J while the work done by the conservative force is 50J.
This leads to the direct conclusion that the resulting energy is 20J.
The conservative force is linked to the movement caused by the sum of the two energies, therefore there is an increase in kinetic energy. The decrease in the mechanical energy of the system is directly due to the loss given by the non-conservative force, therefore there is a decrease in mechanical energy.
Therefore the correct answer is A. Kintetic energy increases and mechanical energy decreases.
Answer:

Given:
Force = 8 N
Distance covered by the body = 50 cm = 0.5 m
Explanation:
Work Done = Force × Distance covered by the body
= 8 × 0.5
= 4 J
Answer:
<h2>The angular velocity just after collision is given as</h2><h2>

</h2><h2>At the time of collision the hinge point will exert net external force on it so linear momentum is not conserved</h2>
Explanation:
As per given figure we know that there is no external torque about hinge point on the system of given mass
So here we will have

now we can say

so we will have


Linear momentum of the system is not conserved because at the time of collision the hinge point will exert net external force on the system of mass
So we can use angular momentum conservation about the hinge point
Answer:
E = 3600 J
Explanation:
Given that,
Voltage, V = 115 V
Power of electric bulb, P = 60 W
We need to find the electric energy used in 1 minute. The electric energy use is given by :

Hence, the electrical energy is 3600 J.