It uses the corkscrew to anchor it to the cork and a lever to pull the cork out
Hope this helps buddy:D
Answer:the force will remain same
Explanation:
because force is equal to the ratio of magnitude and distance
To solve this problem we will apply the concepts related to the calculation of the surface, volume and error through the differentiation of the formulas given for the calculation of these values in a circle. Our values given at the beginning are
![\phi = 76cm](https://tex.z-dn.net/?f=%5Cphi%20%3D%2076cm)
![Error (dr) = 0.5cm](https://tex.z-dn.net/?f=Error%20%28dr%29%20%3D%200.5cm)
The radius then would be
![\phi = 2\pi r \\76cm = 2\pi r\\r = \frac{38}{\pi} cm](https://tex.z-dn.net/?f=%5Cphi%20%3D%202%5Cpi%20r%20%5C%5C76cm%20%3D%202%5Cpi%20r%5C%5Cr%20%3D%20%5Cfrac%7B38%7D%7B%5Cpi%7D%20cm)
And
![\frac{d\phi}{dr} = 2\pi \\d\phi = 2\pi dr \\0.5 = 2\pi dr](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5Cphi%7D%7Bdr%7D%20%3D%202%5Cpi%20%5C%5Cd%5Cphi%20%3D%202%5Cpi%20dr%20%5C%5C0.5%20%3D%202%5Cpi%20dr)
PART A ) For the Surface Area we have that,
![A = 4\pi r^2 \\A = 4\pi (\frac{38}{\pi})^2\\A = \frac{5776}{\pi}](https://tex.z-dn.net/?f=A%20%3D%204%5Cpi%20r%5E2%20%5C%5CA%20%3D%204%5Cpi%20%28%5Cfrac%7B38%7D%7B%5Cpi%7D%29%5E2%5C%5CA%20%3D%20%5Cfrac%7B5776%7D%7B%5Cpi%7D)
Deriving we have that the change in the Area is equivalent to the maximum error, therefore
![\frac{dA}{dr} = 4\pi (2r) \\dA = 4r (2\pi dr)](https://tex.z-dn.net/?f=%5Cfrac%7BdA%7D%7Bdr%7D%20%3D%204%5Cpi%20%282r%29%20%5C%5CdA%20%3D%204r%20%282%5Cpi%20dr%29)
Maximum error:
![dA = 4(\frac{38}{\pi})(0.5)](https://tex.z-dn.net/?f=dA%20%3D%204%28%5Cfrac%7B38%7D%7B%5Cpi%7D%29%280.5%29)
![dA = \frac{76}{\pi}cm^2](https://tex.z-dn.net/?f=dA%20%3D%20%5Cfrac%7B76%7D%7B%5Cpi%7Dcm%5E2)
The relative error is that between the value of the Area and the maximum error, therefore:
![\frac{dA}{A} = \frac{\frac{76}{\pi}}{\frac{5776}{\pi}}](https://tex.z-dn.net/?f=%5Cfrac%7BdA%7D%7BA%7D%20%3D%20%5Cfrac%7B%5Cfrac%7B76%7D%7B%5Cpi%7D%7D%7B%5Cfrac%7B5776%7D%7B%5Cpi%7D%7D)
![\frac{dA}{A} = 0.01315 = 1.31\%](https://tex.z-dn.net/?f=%5Cfrac%7BdA%7D%7BA%7D%20%3D%200.01315%20%3D%201.31%5C%25)
PART B) For the volume we repeat the same process but now with the formula for the calculation of the volume in a sphere, so
![V = \frac{4}{3} \pi (\frac{38}{\pi})^3](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20%28%5Cfrac%7B38%7D%7B%5Cpi%7D%29%5E3)
![V = \frac{219488}{3\pi^2}](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B219488%7D%7B3%5Cpi%5E2%7D)
Therefore the Maximum Error would be,
![\frac{dV}{dr} = \frac{4}{3} 3\pi r^2](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdr%7D%20%3D%20%5Cfrac%7B4%7D%7B3%7D%203%5Cpi%20r%5E2)
![dV = 2r^2 (2\pi dr)](https://tex.z-dn.net/?f=dV%20%3D%202r%5E2%20%282%5Cpi%20dr%29)
![dV = 4r^2 (\pi dr)](https://tex.z-dn.net/?f=dV%20%3D%204r%5E2%20%28%5Cpi%20dr%29)
Replacing the value for the radius
![dV = 4(\frac{38}{\pi})^2(0.5)](https://tex.z-dn.net/?f=dV%20%3D%204%28%5Cfrac%7B38%7D%7B%5Cpi%7D%29%5E2%280.5%29)
![dV = \frac{2888}{\pi^2} cm^3](https://tex.z-dn.net/?f=dV%20%3D%20%5Cfrac%7B2888%7D%7B%5Cpi%5E2%7D%20cm%5E3)
And the relative Error
![\frac{dV}{V} = \frac{ \frac{2888}{\pi^2}}{ \frac{219488}{3\pi^2} }](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7BV%7D%20%3D%20%5Cfrac%7B%20%5Cfrac%7B2888%7D%7B%5Cpi%5E2%7D%7D%7B%20%5Cfrac%7B219488%7D%7B3%5Cpi%5E2%7D%20%7D)
![\frac{dV}{V} = 0.03947](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7BV%7D%20%3D%200.03947)
![\frac{dV}{V} = 3.947\%](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7BV%7D%20%3D%203.947%5C%25)
Explanation:
Speed or velocity (V) = 35 m/s
Kinetic energy (K. E) = 1500 Joule
mass (m) = ?
We know
K.E = 1/2 * m * v²
1500 = 1/2 * m * 35²
1500 * 2 = 1225m
m = 3000 / 1225
m = 2.45 kg
The mass of the object is 2.45 kg
Hope it will help :)
#1
As we are increasing the frequency in the simulation the wavelength is decreasing
So if speed remains constant then wavelength and frequency depends inversely on each other
If we are in boat and and moving over very small wavelengths then these small wavelength will be encountered continuously by the boat in short interval of times
#2
As we are changing the amplitude in the simulation there is no change in the speed frequency and wavelength.
So amplitude is independent of all these parameter
Amplitude of wave will decide the energy of wave
So light of greater intensity is the light of larger amplitude
#3
In our daily life we deal with two waves
1 sound waves
2 light waves