<span>The correct answer to
the question that is stated above is obviously letter b, false.
</span>Seismic waves travel along the Earth’s surface.They are <span>waves of </span>energy<span> that travel through the </span>Earth<span>'s layers. These waves are a result of an </span>earthquake <span>, </span>volcanic<span> eruptions, magma movement and large </span>landslides.
Answer:
Explanation:
The problem is related to rotational motion . So we shall find out rotational kinetic energy .
K E = 1/2 x I ω²
ω is the final angular velocity
Moment of inertial of the disk
I ₁ = 1/2 m r²
= .5 x 165 x 2.93²
= 708.25 kgm²
Moment of inertial of the person
I₂ = mr²
= 62.5 x 2.93²
= 536.55 kgm²
ω₂ = v / R
= 3.11 / 2.93 rad /s
At the time of jumping , law of conservation of angular momentum will apply
I₁ ω₁ + I₂ω₂ = (I₁ + I₂)ω
708.25 x0.691 + 536.55 x ( 3.11 / 2.93 ) = ( 708.25 + 536.55 ) ω
ω = 0 .85 rad/ s
K E = 1/2 x I ω²
= .5 x ( 708.25 + 536.55 ) ( .85 )²
449.68 J
Answer:
Potential difference will be 151.9 volt
Explanation:
We have given capacitance of the capacitor 
Voltage V = 49 Volt
Dielectric constant K = 3.1
We have to find the potential difference
We know that when a dielectric medium is introduced then p[otential difference is increases by k times
As the dielectric constant k = 3.1
So potential difference will be = 3.1×49 = 151.9 volt
If a car crashes into another car like this, the wreck should go nowhere. Besides this being an unrealistic question, the physics of it would look like this:
Momentum before and after the collision is conserved.
Momentum before the collision:
p = m * v = 50000kg * 24m/s + 55000kg * 0m/s = 50000kg * 24m/s
Momentum after the collision:
p = m * v = (50000kg + 55000kg) * v
Setting both momenta equal:
50000kg * 24m/s = (50000kg + 55000kg) * v
Solving for the velocity v:
v = 50000kg * 24m/s/(50000kg + 55000kg) = 11,43m/s