Answer:
Explanation:
Here image distance is fixed .
In the first case if v be image distance
1 / v - 1 / -25 = 1 / .05
1 / v = 1 / .05 - 1 / 25
= 20 - .04 = 19.96
v = .0501 m = 5.01 cm
In the second case
u = 4 ,
1 / v - 1 / - 4 = 1 / .05
1 / v = 20 - 1 / 4 = 19.75
v = .0506 = 5.06 cm
So lens must be moved forward by 5.06 - 5.01 = .05 cm ( away from film )
The magnitude of the electrostatic force between two charges is given by:

where
ke is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges
We can see that the magnitude of the force is directly proportional to the charges. This means that when one of the charges is doubled, the magnitude of the electrostatic force will double as well, so the correct answer is
A) <span>The magnitude of the electrostatic force doubles</span>
Answer:
case x py L is in the positive z direction
case y px L the negative z direction
Explanation:
The angular amount is defined by the relation
L = r x p
the bold are vectors, where r is the position vector and p is the linear amount vector.
The module of this vector can be concentrated by the relation
L = r p sin θ
the direction of the vector L can be found by the right-hand rule where the thumb points in the direction of the displacement vector, the fingers extended in the direction of the moment p which is the same direction of speed and the palm points in the direction of the angular momentum L
in the case x py
the thumb is in the x direction, the fingers are extended in the direction and the palm is in the positive z direction
In the case y px
the thumb is in the y direction, the fingers are in the x direction, the palm is in the negative z direction
Answer:
Watts=Volt*Amps
So A=570/120=4.75amps
If voltage drops to 110V We get A=570/110=5.(18...)amps
Answer:
The acceleration is 14.28 km/h^2
Explanation:
Step one:
Given data
initial speed u= 0 km/h
final speed v= 140km/h
time t= 9.8 seconds
Required
The acceleration of the car
Step two:
From a= v-u/t
substitute
a= 140-0/9.8
a=140/9.8
a=14.28 km/h^2