Answer:
What was her farthest distance from her starting point? 200m
Estimate how long it took her to run around the track.76m
Estimate when she was 100 meters from her starting point. 18sec
Estimate how far she was from the starting line after 60 seconds. 75m
Is Priya's time a function of her distance from her starting point
Yes (I think?)
Step-by-step explanation:
Answer:
1/18
Step-by-step explanation:
Change the denominators to 18 to make like denonminators (make sure to multiply the top)
(16/18 - 15/18)
1/18
Answer: 0.88
Step-by-step explanation:
Let C is the event of drinking coffee, T is the event of drinking tea and M is the event of drinking milk.
Thus, when we make the Venn diagram of the given situation according to the given information,
Total number of people = 50
Number of people who like coffee, tea and milk = 19
Number of people who like coffee, tea but not milk = 16
Number of people who like coffee, milk but not tea = 2
Number of people who like tea, milk but not coffee = 5
Thus, the number of people who like tea only = Total people - (people who like coffee, tea but not milk + people who like coffee, tea and milk + the one who only like tea and milk but not coffee)
= 50 - ( 16 + 19 + 5) = 50 - 46 = 4
Thus, Total number of the person who like milk = 16 + 19 + 5 + 4 = 44
⇒ Probability that this person likes tea =
=
well, keeping in mind that a year has 12 months, that means that 8 months is 8/12 of a year, when Mrs Rojas pull her money out.
![~~~~~~ \textit{Simple Interest Earned Amount} \\\\ A=P(1+rt)\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill & \$6000\\ r=rate\to 4\%\to \frac{4}{100}\dotfill &0.04\\ t=years\to \frac{8}{12}\dotfill &\frac{2}{3} \end{cases} \\\\\\ A=6000[1+(0.04)(\frac{2}{3})]\implies A=6000\left( \frac{77}{75} \right)\implies A=6160](https://tex.z-dn.net/?f=~~~~~~%20%5Ctextit%7BSimple%20Interest%20Earned%20Amount%7D%20%5C%5C%5C%5C%20A%3DP%281%2Brt%29%5Cqquad%20%5Cbegin%7Bcases%7D%20A%3D%5Ctextit%7Baccumulated%20amount%7D%5C%5C%20P%3D%5Ctextit%7Boriginal%20amount%20deposited%7D%5Cdotfill%20%26%20%5C%246000%5C%5C%20r%3Drate%5Cto%204%5C%25%5Cto%20%5Cfrac%7B4%7D%7B100%7D%5Cdotfill%20%260.04%5C%5C%20t%3Dyears%5Cto%20%5Cfrac%7B8%7D%7B12%7D%5Cdotfill%20%26%5Cfrac%7B2%7D%7B3%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%3D6000%5B1%2B%280.04%29%28%5Cfrac%7B2%7D%7B3%7D%29%5D%5Cimplies%20A%3D6000%5Cleft%28%20%5Cfrac%7B77%7D%7B75%7D%20%5Cright%29%5Cimplies%20A%3D6160)
well, she put in 6000 bucks, got back 160 extra, that's the interest earned in the 8 months.
what if she had left her money for 1 whole year, then
![~~~~~~ \textit{Simple Interest Earned Amount} \\\\ A=P(1+rt)\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill & \$6000\\ r=rate\to 4\%\to \frac{4}{100}\dotfill &0.04\\ t=years\dotfill &1 \end{cases} \\\\\\ A=6000[1+(0.04)(1)]\implies A=6240](https://tex.z-dn.net/?f=~~~~~~%20%5Ctextit%7BSimple%20Interest%20Earned%20Amount%7D%20%5C%5C%5C%5C%20A%3DP%281%2Brt%29%5Cqquad%20%5Cbegin%7Bcases%7D%20A%3D%5Ctextit%7Baccumulated%20amount%7D%5C%5C%20P%3D%5Ctextit%7Boriginal%20amount%20deposited%7D%5Cdotfill%20%26%20%5C%246000%5C%5C%20r%3Drate%5Cto%204%5C%25%5Cto%20%5Cfrac%7B4%7D%7B100%7D%5Cdotfill%20%260.04%5C%5C%20t%3Dyears%5Cdotfill%20%261%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%3D6000%5B1%2B%280.04%29%281%29%5D%5Cimplies%20A%3D6240)
so had she left it in for a year, she'd have gotten 6240, namely 240 in interest, well, what fraction of a year's interest was earned? or worded differently, what fraction is 160(8 months) of 240(1 year)?

Answer:
7 1/6
Step-by-step explanation: