This is hard to show but here is how you would determine these. NOTE each dot is an electron.
<span>Question 1) </span>
<span>F-H </span>
<span>1) determine the valance electrons for each. F has 7 and H has 1 </span>
<span>2) one electron from both F and H form the bond "-" which means that you still have 6 electrons to place around F and none to place around H. Place the 6 in sets of 2 around the F </span>
<span>.. </span>
<span>F-H </span>
<span>¨ </span>
<span>Question 2) </span>
<span>2) H-O-H </span>
<span>H has 1 valence electron minus 1 used in the bond to O = 0 electrons to place </span>
<span>H has 1 valence electron minus 1 used in the bond to O = 0 electrons to place </span>
<span>O has 6 valence electrons minus 2 used in the bonds to the H's = 4 electrons to place </span>
<span>H-O-H: place two dots above and below the oxygen </span>
<span>Question 3) </span>
<span>3) O=N----H : NOTE: a double bond requires O and N to share two of their electrons each </span>
<span>O has 6 valence electrons minus 2 used in the bonds to N = 4 electrons to place </span>
<span>N has 5 valence electrons minus 3 used in the bonds to O and H = 2 electrons to place </span>
<span>H has 1 valence electron minus 1 used in the bond to N = 0 electrons to place </span>
<span>place the 2 dots on top and bottom of oxygen. </span>
<span>place 2 above the N </span>
Answer:
c. precipitation
Explanation:
Let's consider the following balanced net ionic equation.
Cl⁻(aq) + AgNO₃(ag) ⇒ AgCl(s) + NO₃⁻ (ag)
What kind of reaction is this?
a. acid-base. No, because the reactants are not acids and bases.
b. redox. No, because all the species have the same oxidation numbers in the reactants and the products
c. precipitation. Yes, because an insoluble compound (AgCl) is produced, which then precipitates.
Answer:
of 0.056 M HF solution is 
Explanation:
cM 0 0
So dissociation constant will be:
Give c= 0.056 M and
= ?
Putting in the values we get:
Thus
of 0.056 M HF solution is 
Answer:
(edit: nvm I figured it out, here is the answer)
Explanation:
<span>Evaporation from the oceans is the primary mechanism supporting the surface-to-atmosphere portion of the water cycle</span>