Answer:
(a) 42 N
(b)36.7 N
Explanation:
Nomenclature
F= force test line (N)
W : fish weight (N)
Problem development
(a) Calculating of weight of the heaviest fish that can be pulled up vertically, when the line is reeled in at constant speed
We apply Newton's first law of equlibrio because the system moves at constant speed:
∑Fy =0
F-W= 0
42N -W =0
W = 42N
(b) Calculating of weight of the heaviest fish that can be pulled up vertically, when the line is reeled with an acceleration whose magnitude is 1.41 m/s²
We apply Newton's second law because the system moves at constant acceleration:
m= W/g , m= W/9.8 , m:fish mass , W: fish weight g:acceleration due to gravity
∑Fy =m*a
m= W/g , m= W/9.8 , m:fish mass , W: fish weight g:acceleration due to gravity
F-W= ( W/9.8 )*a
42-W= ( W/9.8 )*1.41
42= W+0.1439W
42=1.1439W
W= 42/1.1439
W= 36.7 N
Answer:
it will move towards the object's magnetic south
Explanation:
The compass pints towards the earth geographic north because the magnetic south of the earth's magnetic field is located in there, if you placed such compass neaar the piece of ferromagnetic material, the magnetic field produced by the magnet will make the compass needle point towards its south magnetic pole, in the same fashion as it points to the earth's magnetic south. It will point to the object's south pole because the magnetic field will be stronger than the earth's (which is weak) that is because of the way magnetism works, opposite poles are attracted and similar poles will tend to separate from each other
Answer:
they use thermals and air currents to glide.
Explanation:
when they flap higher they use thermals and air currents because flapping takes a lot of fuel,energy
I’m guessing it’s the last one, trough