Answer:
true
Explanation:
Have a great day/night! ^_^
Answer:
19 x 85 = 1,615 for distance. Displacement is 0
Explanation:
The total distance traveled by the ant in 9 round trips and one 1/2 trip, or 19 one bash way trips: 19 x 85cm = 1615cm. The displacement of the ant after the tenth trip is 0 cm ( the displacement origin is the nest.)
The first right-hand rule determines the directions of magnetic force, conventional current and the magnetic field. Given any two of theses, the third can be found.
The second Right-Hand Rule determines the direction of the magnetic field around a current-carrying wire and vice-versa<span> </span>
So, assuming that a magnetic field <span>exists and its direction is known and assuming that a charged particle moves in a specific direction through that field with velocity (v(, to determine the direction of force on the particle we should use the second right-hand rule.</span>
Given:
The initial velocity of the object, v=30 m/s
a_t=0
a_c≠0
The time period is Δt.
To find:
The right conclusion among the given choices.
Explanation:
a_t represents the tangential accleration on the object and a_c represents the centripetal acceleration on the object.
The centripetal acceleration is the acceleration that keeps the object in its circular path. The centripetal force only changes the direction of the velocity and not the magnitude.
Thus the magnitude of the velocity of the object remains the same after a time interval of Δt. But the direction of the velocity of the object will be changed and will be unknown after Δt seconds.
Final answer:
Thus the object will be traveling at 30 m/s in some unknown direction.
Therefore, the correct answer is option a.
The energy stored in a capacitor is given by:

where
U is the energy
C is the capacitance
V is the potential difference
The capacitor in this problem has capacitance

So if we re-arrange the previous equation, we can calculate the potential V that should be applied to the capacitor to store U=1.0 J of energy on it: