Answer:
C. while the magnet is moving
Explanation:
Electromagnetic induction implies the production of electric current by mere movement of a magnet with respect to a coil or wire.
In the given question, current would be induced in the wire only when the magnet moves. That is either when the magnet is pushed into a wire, or when pulled out. But no current would flow through the wire when the magnet is left there for a while.
The current is induced because of the motion involved. Thus, the appropriate option is C.
B, larceny because that's theft of personal property.
Answer:
the car have travelled 0.31 mile during that time
Explanation:
Applying the Equation of motion;
s = 0.5(u+v)t
Where;
s = distance travelled
u = initial speed = 0 mph
v = Final speed = 50 mph
t = time taken = 3/4 min = 3/4 ÷ 60 hours = 1/80 hour
Substituting the given values into the equation;
s = 0.5(0+50)×(1/80)
s = 0.3125 miles
s ~= 0.31 mile
the car have travelled 0.31 mile during that time
To solve this question, we use the wave equation which is:
C=f*λ
where:
C is the speed;
f is the frequency;
λ is the wavelength
So in this case, plugging in our values in the problem. This will give us:
C = 261.6Hz × 1.31m
= 342.696 m/s is the answer.
Answer:
An asteroid moving at a constant speed through space.
Explanation: