Answer:
Ver explicacion
Explanation:
Cuando el cilindro de 40 libras está conectado al cilindro de 100 libras, generamos una presión que continúa hasta que los dos cilindros alcanzan la misma presión de gas en equilibrio. Recuerde que el cilindro de 100 libras estaba inicialmente vacío. Esto significa que su presión inicial es 0. El cilindro de 40 libras ya estaba lleno, por lo que dividimos esta cantidad en dos para tener en cuenta su distribución entre los dos cilindros.
Ahora tenemos 20 libras de gas propano presentes en cada cilindro. La implicación de esto es que, en el cilindro de 100 libras, necesitamos 80 libras adicionales para completar las 100 libras.
Answer:
2.6%
Explanation:
As, 1 ounce (oz) = 0.0625 pounds (lb)
Therefore, weight of baby at discharge = 7 lb,1 oz = 7+0.0625 lb = 7.0625 lb
Since, 1 oz = 0.0625 lb
⇒ 4 oz = 4×0.0625 = 0.25 lb
Therefore, weight of baby at birth = 7 lb,4 oz = 7+0.25 lb = 7.25 lb
The <u>amount of weight lost</u> is equal to the difference of weight of the baby at birth and discharge.
Therefore, <u>weight lost</u> = 7.25 lb - 7.0625 lb = <u>0.1875 lb</u>
Now, the <u>percentage of weight lost</u> by the baby is given by the amount of weight lost divided by the weight of the baby at birth.
Therefore, <u>the percentage of weight los</u>t = weight lost ÷ weight at birth = 0.1875 lb ÷ 7.25 lb × 100 = <u>2.6% </u>
Answer:
Explanation:
<u>1) Rate law, at a given temperature:</u>
- Since all the data are obtained at the same temperature, the equilibrium constant is the same.
- Since only reactants A and B participate in the reaction, you assume that the form of the rate law is:
r = K [A]ᵃ [B]ᵇ
<u>2) Use the data from the table</u>
- Since the first and second set of data have the same concentration of the reactant A, you can use them to find the exponent b:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₂ = (1.50)ᵃ (2.50)ᵇ = 2.50 × 10⁻¹ M/s
Divide r₂ by r₁: [ 2.50 / 1.50] ᵇ = 1 ⇒ b = 0
- Use the first and second set of data to find the exponent a:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₃ = (3.00)ᵃ (1.50)ᵇ = 5.00 × 10⁻¹ M/s
Divide r₃ by r₂: [3.00 / 1.50]ᵃ = [5.00 / 2.50]
2ᵃ = 2 ⇒ a = 1
<u>3) Write the rate law</u>
This means, that the rate is independent of reactant B and is of first order respect reactant A.
<u>4) Use any set of data to find K</u>
With the first set of data
- r = K (1.50 M) = 2.50 × 10⁻¹ M/s ⇒ K = 0.250 M/s / 1.50 M = 0.167 s⁻¹
Result: the rate constant is K = 0.167 s⁻¹