1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LuckyWell [14K]
3 years ago
12

Brandon earns $6 for every shirt he sells. Which equation could Brandon use to determine the amount of money he earns (E) for an

y number of shirts (s) he sells?
A) 6 = sE
B) s = 6E
C) E = 6s
D) E = 6 + s
Mathematics
2 answers:
VladimirAG [237]3 years ago
7 0

The correct answer is C) E=6s.

The total amount of money that Brandon earns is based off of the $6 that he earns per shirt. $6*s (the total number of shirts sold)= E (the total amount of money earned)

Hope this helps!

WINSTONCH [101]3 years ago
7 0

Answer:

c

Step-by-step explanation:

You might be interested in
Which of the following words does not indicate multiplication?
never [62]

Answer:

D, more than

Step-by-step explanation:

More than is addition / greater than

4 0
3 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
What is 6/2(1+2)=?
Rufina [12.5K]

Answer:

Answer is 9

Step-by-step explanation:

Remember PEMDAS???

"parenthesis, exponents, multiplication, division, addition, subtraction"

you would first solve the addition inside of the parentheses (1 + 2 = 3), and from there finish the equation as it's written from left to right.

8 0
2 years ago
Read 2 more answers
IMAGE BELOW I WILL GIVE BRAINLIEST
diamong [38]

Answer:

for L 2, 2 and for LM it is -8,8

Step-by-step explanation:

easy

7 0
2 years ago
Find the surface area of the two following figures. Show all your work.
Misha Larkins [42]

Answer:

First shape: 366 in^2

Second shape: 376 in^2

Pretty sure these are correct, hope this helps!

7 0
2 years ago
Other questions:
  • Assume that a randomly selected subject is given a bone density test. Those test scores are normally distributed with a mean of
    10·1 answer
  • In each of the following problems, choose the price per unit per oz. in blanks a. and b, and then select the best buy.
    13·2 answers
  • What is this answer 31,398 ÷ 65 =
    7·2 answers
  • Which of the following systems has infinitely many solutions?
    6·1 answer
  • MATH-IXL , Look at the picture below to answer CORRECTLY. Only give me one right answer So i can mark yall as Brainliest!
    10·1 answer
  • Y’all please help on these 2 questions !! asap
    8·1 answer
  • Three measuring tapes are 10, 15 and 25 mlong. Find the shortest lenght which can be measured exactly by any one
    12·1 answer
  • Find the total surface area of the shape
    12·1 answer
  • Find the product or type<br> "impossible"<br> [6 ]I-1<br> 1 11<br> (-5<br> -5 3
    10·2 answers
  • I have no idea with this question and my assesment is tomorow help needed desperetly brainliest for answer and explenation.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!