Answer:
3(4x - 1)(2x + 3)
Step-by-step explanation:
Rearrange the equation into standard form
Subtract 9 - 30x from both sides
24x² + 30x - 9 = 0 ← in standard form
Take out 3 as a common factor
3(8x² + 10x - 3) = 0 ← factor the quadratic
Consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x term
product = 8 × - 3 = - 24, sum = 10
The factors are - 2 and + 12
Use these factors to replace the x- term, that is
8x² - 2x + 12x - 3 ( factor the first/second and third/fourth terms )
2x(4x - 1) + 3(4x - 1) ← take out the common factor (4x - 1)
(4x - 1)(2x + 3)
24x² + 30x - 9 = 3(4x - 1)(2x + 3) ← in factored form
106, 129, 152, 175, 198 count by 23
There are many ways, but here is one:
x = 100
Since ‘x’ is 100 and we want 100 more, we just need to add ‘x’ to 623
Answer: x + 623 (Make sure you define your ‘x’ value)