Answer: 0.48W
useful power output=total power output*efficency
useful power output=2.4W*0.20=0.48W
Answer:
v = 135.13 mph
Explanation:
Given that,
The race car was moving for 3.7 hours and during that time it traveled a distance of 500 miles south.
We need to find the speed of the car.
We know that,
Speed = distance/time
So,

So, the speed of the car is equal to 135.13 mph.
Answer:
C. N/m (newtons/meter)
Explanation:
Since the equation for potential energy for a spring is PE = 1/2kx², after you know <em>k </em>and <em>x</em>, you will get an answer in Joules.
Please let me know if you want me to explain further!
Thanks!
The energy of an electron as it is ejected from the atom can be calculated from the product of the Planck's constant and the frequency of the light energy. We can calculate the wavelength from the frequency we can calculate. We do as follows:
E = hv
4.41 x 10-19 = 6.62607004 × 10<span>-34 (v)
v = 6.66x10^14 /s
wavelength = speed of light / frequency
</span>
wavelength = 3x10^8 / 6.66x10^14
wavelength = 4.51x10^-7 m = 450.75 nm
Answer:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops, then <u>the specific heats of both objects will be equal.</u>
Explanation:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops when the two<u> objects of same mass</u> are brought into contact, then their specific heat capacity is equal.
<u>We can prove this by the equation of heat for the two bodies:</u>
<em>According to given condition,</em>


<em>when there is no heat loss from the system of two bodies then </em>


- Thermal conductivity is ultimately affects the rate of heat transfer, however the bodies will attain their final temperature based upon their mass and their specific heat capacities.
The temperature of the colder object will rise twice as much as the temperature of the hotter object only in two cases:
- when the specific heat of the colder object is half the specific heat of the hotter object while mass is equal for both.
OR
- the mass of colder object is half the mass of the hotter object while their specific heat is same.