Answer:
Li has less mass and therefore less inertia, so he can change his motion more easily than Raj.
Explanation:
Inertia describes the resistance of an object to any change in its state of motion, and it depends on the mass of the object only. In particular:
- if an object has a large inertia (large mass), then it is more difficult to change its state of motion (i.e. to put it in motion, or to slow it down, or to change its direction of motion)
- if an object has small inertia (small mass), then it is more easy to change its state of motion
In this problem, Li has less mass than Raj, so he has less inertia, therefore he can change his motion more easily than Raj.
Answer:
R' = 4R
The resistance will become 4 times the initial value.
Explanation:
The resistance of a wire at room temperature, is given by the following formula:
R = ρL/A ----------- equation 1
where,
R = Resistance of wire
ρ = resistivity of the material
L = Length of wire
A = Cross-sectional area of wire
Now, if the length (L) is multiplied by 4, then resistance will become:
R' = ρ(4L)/A
R' = 4 (ρL/A)
using equation 1:
<u>R' = 4R</u>
<u>The resistance will become 4 times the initial value.</u>
I think the right answer would be objects pull because gravitational pull is when an object with more mass than an other object would pull the small mass object
Explanation:
Area of ring 
Charge of on ring 
Charge on disk

![\begin{aligned}d v &=\frac{k d q}{\sqrt{x^{2}+a^{2}}} \\&=2 \pi-k \frac{a d a}{\sqrt{x^{2}+a^{2}}} \\v(1) &=2 \pi c k \int_{0}^{R} \frac{a d a}{\sqrt{x^{2}+a^{2}}} \cdot_{2 \varepsilon_{0}}^{2} R \\&=2 \pi \sigma k[\sqrt{x^{2}+a^{2}}]_{0}^{2} \\&=\frac{2 \pi \sigma}{4 \pi \varepsilon_{0}}[\sqrt{z^{2}+R^{2}}-(21)] \\&=\frac{\sigma}{2}(\sqrt{2^{2}+R^{2}}-2)\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7Dd%20v%20%26%3D%5Cfrac%7Bk%20d%20q%7D%7B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%7D%20%5C%5C%26%3D2%20%5Cpi-k%20%5Cfrac%7Ba%20d%20a%7D%7B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%7D%20%5C%5Cv%281%29%20%26%3D2%20%5Cpi%20c%20k%20%5Cint_%7B0%7D%5E%7BR%7D%20%5Cfrac%7Ba%20d%20a%7D%7B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%7D%20%5Ccdot_%7B2%20%5Cvarepsilon_%7B0%7D%7D%5E%7B2%7D%20R%20%5C%5C%26%3D2%20%5Cpi%20%5Csigma%20k%5B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%5D_%7B0%7D%5E%7B2%7D%20%5C%5C%26%3D%5Cfrac%7B2%20%5Cpi%20%5Csigma%7D%7B4%20%5Cpi%20%5Cvarepsilon_%7B0%7D%7D%5B%5Csqrt%7Bz%5E%7B2%7D%2BR%5E%7B2%7D%7D-%2821%29%5D%20%5C%5C%26%3D%5Cfrac%7B%5Csigma%7D%7B2%7D%28%5Csqrt%7B2%5E%7B2%7D%2BR%5E%7B2%7D%7D-2%29%5Cend%7Baligned%7D)
Note: Refer the image attached