Answer:
10 m/s^2
Explanation:
Equation: F = ma.
a = acceleration
m = mass
F = force
Because we are trying to find acceleration instead of force we want to rearrange the equation to solve for a which is F/m = a.
F = 20
m = 2
a = ?
a = F/m
a = 20/2
a = 10 m/s^2
<em>There are some placeholders in the expression, but they can be safely assumed</em>
Answer:
(a) 
(b) 
(c) 
(d) 
Explanation:
<u>Sinusoidal Waves
</u>
An oscillating wave can be expressed as a sinusoidal function as follows

Where



The voltage of the question is the sinusoid expression

(a) By comparing with the general formula we have


(b) The period is the reciprocal of the frequency:


Converting to milliseconds

(c) The amplitude is

(d) Phase angle:

Explanation:
formula: <u>Mass</u>
Density x volume
2a) m=10kg v=0.3m³
10÷0.3=33.3 kg/m
2b) m = 160 kg V=0.1m³
160÷0.1=1600 kg/m
2c) m = 220 kg V = 0.02m³
220÷0.02=11000 kg/m
A wooden post has a volume of 0.025m³ and a mass of 20kg. Calculate its density in kg/m.
density = volume ÷ mass
20÷ 0.025=800 kg/m
Challenge: A rectangular concrete slab is 0.80m long, 0.60 m wide and 0.04m thick. Calculate its volume in m³.
Formula : Length x width x height = Volume
0.80 x 0.60 x 0.04 = 0.0192m³
B) The mass of the concrete slab is 180 kg. Calculate its density in kg/m.
density = volume ÷ mass
180 ÷ 0.0192 = 9375 kg/m
Answer:
"h" signifies Planck's constant
Explanation:
In the equation energy E = h X v
The "h" there signifies Planck's constant
Planck's constant is a value, that shows the rate at which the energy of a photon increases/decreases, as the frequency of its electromagnetic wave changes.
It was named after Max Planck who discovered this unique relationship between the energy of a light wave and its frequency.
Planck's constant, "h" is usually expressed in Joules second
Planck's constant = 
A simple electromagnet consisting of a coil of insulated wire wrapped around an iron core<span>. A </span>core<span> of ferromagnetic material like </span>iron<span> serves to increase the magnetic field created. The strength of magnetic field </span>generated<span> is proportional to the amount of </span>current<span> through the winding.</span>