There are two ways to solve this. The longer way is to use those equations to calculate numbers for total distance.
The easier way is to find the area under the graph. That's right, AREA UNDER VELOCITY-TIME graph is the TOTAL DISTANCE travelled!
it's a shortcut.
Let's split up the area into a triangle and rectangle:
Triangle = 0.5(4-0)(10-0) = 20 m
Rectangle = (6-4)(10-0) = 20 m
Total distance = 40 m!
Answer:
Important enough for someone to ask you to do it.
Explanation:
If someone asked you this question, then it must be important and stuff. This is proven by scientific stuff that no one cares about.
Answer Explanation :
Poiseuille equation: this equation is used for non ideal flow this is used for the calculation of pressure in laminar flow it is physical law we know that fluid in laminar flow, flows across the pipe whose diameter is larger than the length of pipe
in mathematical form the equation can be expressed as
Q = 
where η is the cofficient of viscosity
now if we assume a small sphere of radius a is suspended freely in the plane of the laminar flow then for assuring that the sphere does not migrate with the flow we have to calculate the rate of flow of the liquid
Answer:
Answer is C
Explanation:
Let's say the pendulum starts swinging from its max height from the left. It then will go down and reach the equilibrium position, this will make it lose GPE while gaining KE (the loss in GPE = gain in KE). At the equilibrium position it has the max KE (max velocity) and minimum GPE. After passing the equilibrium it then starts to head up to the max height on the right, the pendulum gains GPE while losing KE and at the top will have minimum KE while having max GPE. Meaning throughout its joruney the total energy remains constant as
Total energy = KE + GPE
I have attached a simple diagram below, the y axis is the energy and x axis being the time (where t = 0 is the pendulum starting from max height left of the equilibrium). The green curve the the GPE and blue curve is KE. Red line shows that at all times the energy is constant.
Answer:
<h2>Electric charge</h2>
Explanation:
The rate of the flow of electric charge is known as electric current. <u>By convention, the direction of electric current is always the direction of net flow of positive charge.</u>