Answer:
<h2>0.93 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 37.2 g
volume = 40 mL
We have

We have the final answer as
<h3>0.93 g/mL</h3>
Hope this helps you
<u>Answer:</u> The mass of sample A after given time is 99.05 g.
<u>Explanation:</u>
All the radioactive reactions follows first order kinetics.
The equation used to calculate half life for first order kinetics:

We are given:

Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = 84.2 s
= initial amount of the reactant = 250 g
[A] = amount left after decay process = ?
Putting values in above equation, we get:
![0.011s^{-1}=\frac{2.303}{84.2s}\log\frac{250}{[A]}](https://tex.z-dn.net/?f=0.011s%5E%7B-1%7D%3D%5Cfrac%7B2.303%7D%7B84.2s%7D%5Clog%5Cfrac%7B250%7D%7B%5BA%5D%7D)
![[A]=99.05g](https://tex.z-dn.net/?f=%5BA%5D%3D99.05g)
Hence, the mass of sample A after given time is 99.05 g.
I was taught how to do it this way and trust me it is way easier than doing the stuff with fractions. I’ll upload a photo on how to do it
Answer: Weak acids are poor conductors of electricity.
Explanation:
Weak acids are defined as the acids which dissociate weakly or partially when dissolved in water (polar solvent).
For example, 
Due to less dissociation there will be less number of ions present in a solution of weak acid. As a result, a weak acid will be poor conductor of electricity.
As electricity is the flow of ions.
Thus, we can conclude that weak acids are poor conductors of electricity.