Answer:
2-3-1-4
Explanation:
The astronomer Nicolaus Copernicus did not have a theory about the Earth revolving around the sun until he got into astronomy and began to study the patterns of the sun and the moon as well as reading other entries from previous astronomers. You can pretty much guess from there, he had to have the theory before proving it etc.
Explanation:
Mg(s) + Cr(C2H3O2)3 (aq)
Overall, balanced molecular equation
Mg(s) + Cr(C2H3O2)3(aq) --> Mg(C2H3O2)3(aq) + Cr(s)
To identify if an element has been reduced or oxidized, the oxidation number is observed in both the reactant and product phase.
An increase in oxidation number denotes that the element has been oxidized.
A decrease in oxidation number denotes that the element has been reduced.
Oxidation number of Mg:
Reactant - 0
Product - +3
Oxidation number of Cr:
Reactant - +3
Product - 0
Note: C2H3O2 is actually acetate ion; CH3COO- The oxidatioon number of C, H and O do not change.
Oxidized : Mg
Reduced : Cr
3) CH₃-COOH + NH₃ → CH₃-COO⁻NH₄⁺
4) 2 FeCl₃ + 3 Ag₂SO₃ → Fe₂(SO₃)₃ + 6 AgCl
5) 2 Al + 3 NiCl₂ → 2 AlCl₃ + 3 Ni
6) 4 LiCl + Pb(NO₂)₄ → 4 LiNO₂ + PbCl₄
7) 3 H₂SO₄ + 2 Al(OH)₃ → Al₂(SO₄)₃ + 6 H₂O
8) Cd(NO₃)₂ + Na₂S → CdS + 2 NaNO₃
9) Cr₂(SO₄)₃ + 3 (NH₄)₂CO₃ → Cr₂(CO₃)₃ + 3 (NH₄)₂SO₄
Assuming the concentration of stock solution is 50% sodium phosphate buffer solution, the volume of stock solution required is 6 mL and the volume of water required is 6 mL.
<h3>What volume of a stock Sodium phosphate buffer and water is needed to 12 mL of 25% sodium phosphate buffer of pH 4?</h3>
The process of preparing solutions from stock solutions of higher concentration is known as dilution.
Dilution is done with the aid of the dilution formula given below:
where
- C1 is the concentration of stock solution
- V1 is the volume of stock solution required to prepare a diluted solution
- C2 is the concentration of the diluted solution prepared
- V2 is the final volume of the diluted solution
From the data provided:
C1 is not given
V1 is unknown
C2 = 25%
V2 = 12 mL
- Assuming C1 is 50% solution
Volume of stock, V1, required is calculated as follows:
V1 = C2V2/C1
V1 = 25 × 12 /50
V1 = 6 mL
Therefore, the volume of stock solution required is 6 mL and the volume of water required is 6 mL.
Learn more about dilution formula at: brainly.com/question/7208546