

- <u>We </u><u>have </u><u>given </u><u>a</u><u> </u><u>right</u><u> </u><u>angled </u><u>triangle </u><u>whose </u><u>values </u><u>are </u><u>m</u><u>, </u><u> </u><u>n </u><u>and </u><u>2</u><u> </u>

- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>value </u><u>of </u><u>m </u><u>and </u><u>n</u>

<u>In </u><u>the </u><u>given </u><u>right </u><u>angled </u><u>triangle</u><u>, </u><u>we </u><u>have </u>
- Perpendicular height = n units
- Base = 2 units
- Hypotenuse = m units
<u>Now</u><u>, </u><u> </u><u>By </u><u>using </u><u>trigonometric </u><u>ratios </u>



<u>According </u><u>to </u><u>the </u><u>question </u><u>:</u><u>-</u>



- <u>We </u><u>know </u><u>that </u><u>,</u><u> </u><u>Sum </u><u>of </u><u>Angles</u><u> </u><u>of </u><u>triangle </u><u>is </u><u>1</u><u>8</u><u>0</u><u>°</u><u> </u><u>.</u>
<u>Therefore</u><u>, </u>
Let the unknown angle be x



<u>Now</u><u>, </u>





Thus, The value of m = 2√2 and n = 2

If the value, let's call it x, is less than a value, it is x<__ if it's less than or equal to a value, use <u><</u>
Answer:
D
Step-by-step explanation:
there are 9 digits.
and round it off to the nearest hundred million which is 3.
There are 8 digits before the 3... so 10 gets to the power of 8.___ 10⁸
3,0×10⁸ m.s^-1
Answer:
x=4
Step-by-step explanation:
If all the figures are similar, we'll have to shrink them at the same rate as the rest.
The ratio here is 2/5. So,
2/5 = 6.4/16
2/5 = x/10
x=4