<u>Answer:</u> The molarity of barium hydroxide solution is 0.118 M.
<u>Explanation:</u>
To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is 
We are given:

Putting values in above equation, we get:

Hence, the molarity of
solution will be 0.118 M.
<h3>
Answer: 386.67 g/mol </h3>
Explanation:
Molar Mass = Mass ÷ Mole
= 0.406 g ÷ 0.00105 mol
= 386.67 g/mol
∴ molar mass of cholesterol = 386.67 g/mol
Answer:
10 neutrons
Explanation:
N=Z-A ie. number of neutrons=mass number-atomic number
N=19-9=10
We have Kc = 4.2 x 10^-2 (given but missing in the question)
and When the balanced equation for this reaction is:
PCl5(g) ↔ PCl3(g) + Cl2(g)
so, according to the Kc formula:
Kc = the concentration of products / the concentration of the reactants
so, to get the concentration of the reactants in equilibrium, the concentration of the products / the concentration of the reactants should equal the Kc value which is given in the question (missing in your question).
So by substitution in Kc formula:
Kc = [PCl3]*[Cl2] / [PCl5]
4.2 x 10^-2 = 0.18 * 0.25 /[PCl5]
∴[PCl5] = 0.18*0.25 / 4.2x10^-2 = 1.07
So the concentration of the reactants in equilibrim = 1.07