Answer:
4. Principal and Azimuthal (subsidiary) quantum number
5.Principal, Azimuthal (subsidiary), and magnetic quantum number
6. 10 electrons
7. 32 electrons
8. 36 electrons
Explanation:
4. Principal and Azimuthal (subsidiary) quantum number because in 4d, 4 represent principal quantum number and d- represents azimuthal quantum number (having l- value as 3)
5.Principal, Azimuthal (subsidiary), and magnetic quantum number are the first three because 2 stands for principal, s-for azimuthal (l=0) and magnetic quantum number for s- orbital= 0
6. 10 electrons, because for sublevel with l= 3, is a d-sub-level, and d- can take 10-electrons
7. 32 electrons, using the relationship 2×n^2 for the maximum number of electrons in a shell,
,n= 4 , hence 2×4^2= 32
8. 36 electrons, because n=4 and n= 3 can have the maximum configuration of [Ar]4s^2 3d^10 4p^6
This will sum up to 36- electrons, since Argon has 18 -electrons.
18+2+10+6=36 electrons
The correct answer is Gamma decay. It happens after beta and alpha decay
because what's left after those two can enter a new process of gamma
decay. This releases gamma rays which is a more complex term for the
photons that you mentioned before. These rays can be dangerous for
humans so care not to get caught in them.
Answer:
Zinc nitrate gives white ppt. which dissolves in excess ammonium hydroxide and produce a colorless solution whereas lead nitrate gives a chalky white ppt. of lead hydroxide which doesnot dissolve.
Explanation:
Hope this helps :)
Answer:
5×10⁵ L of ammonia (NH3)
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
N2 + 3H2 —> 2NH3
From the balanced equation above, we can say that:
3 L of H2 reacted to produce 2 L of NH3.
Finally, we shall determine the volume of ammonia (NH3) produced by the reaction of 7.5×10⁵ L of H2. This can be obtained as illustrated below:
From the balanced equation above,
3 L of H2 reacted to produce 2 L of NH3.
Therefore, 7.5×10⁵ L of H2 will react to produce = (7.5×10⁵ × 2)/3 = 5×10⁵ L of NH3.
Thus, 5×10⁵ L of ammonia (NH3) is produced from the reaction.