Answer:
The solution in beaker A is unsaturated
The solution in beaker B is saturated
Explanation:
A saturated solution is a solution that contains just as much solute as it can normally hold at a particular temperature. An unsaturated solution is a solution that contains less solute than it can normally hold at a particular temperature.
If more solute is added to a saturated solution, the added solute does not dissolve completely. However, if more solute is added to an unsaturated solution, the added solute dissolves.
The product of prime polynomials is equivalent to 36x3 – 15x2 – 6x is letter B which is 3x(3x – 2)(4x 1). Below is the solution.
3x(3x - 2) (4x + 1)
= 9x2 - 6x (4x + 1)
= 36x3 + 9x2 + - 24x2 - 6x
= 36x3 - 15x2 - 6x
Answer:
- 602 mg of CO₂ and 94.8 mg of H₂O
Explanation:
The<em> yield</em> is measured by the amount of each product produced by the reaction.
The chemical formula of <em>fluorene</em> is C₁₃H₁₀, and its molar mass is 166.223 g/mol.
The <em>oxidation</em>, also know as combustion, of this hydrocarbon is represented by the following balanced chemical equation:

To calculate the yield follow these steps:
<u>1. Mole ratio</u>

<u />
<u>2. Convert 175mg of fluorene to number of moles</u>
- Number of moles = mass in grams / molar mass
<u>3. Set a proportion for each product of the reaction</u>
a) <u>For CO₂</u>
i) number of moles


ii) mass in grams
The molar mass of CO₂ is 44.01g/mol
- mass = number of moles × molar mass
- mass = 0.013686 moles × 44.01 g/mol = 0.602 g = 602mg
b) <u>For H₂O</u>
i) number of moles

ii) mass in grams
The molar mass of H₂O is 18.015g/mol
- mass = number of moles × molar mass
- mass = 0.00526 moles × 18.015 g/mol = 0.0948mg = 94.8 mg
Answer:
it is always necessary to use the roman numeral as the assigned charge of the metal.
Explanation:
This is so that one would know which Transition metal is being used. For example copper (II) would be Cu²+