If the gymnast mass were doubled, her height (h) from the top of the board would be as follows,
с Stay the same
Explanation:
- The Mass of an object or body does not affect the acceleration due to gravity in any kind of way.
- Light weight objects accelerate more slowly than the heavy objects because when the forces other than the gravity also plays a major role.
- Mass increases of a body when an object has higher velocity or the speed.
- The greater the force of gravity, it would give a direct impact on the object's acceleration; thus considering only a force, the heavier the object is, it would accelerate faster. But an acceleration depends upon the two factors which are force and mass.
- Newton's second law of motion states that the acceleration of an object is dependent upon the two factors which are, the net force of an object and the mass of the object.
Answer:

Explanation:
<u>Net Forces and Acceleration</u>
The second Newton's Law relates the net force
acting on an object of mass m with the acceleration a it gets. Both the net force and the acceleration are vector and have the same direction because they are proportional to each other.

According to the information given in the question, two forces are acting on the swimming student: One of 256 N pointing to the south and other to the west of 104 N. Since those forces are not aligned, we must add them like vectors as shown in the figure below.
The magnitude of the resulting force
is computed as the hypotenuse of a right triangle


The acceleration can be obtained from the formula

Note we are using only magnitudes here



Answer:
3.24 m/s
Explanation:
Suppose that the boat sails with velocity (relative to water) direction being perpendicular to water stream. Had there been no water flow, it would have ended up 0m downstream
Therefore, the river speed is the one that push the boat 662 m downstream within 539 seconds. We can use this to calculate its magnitude

So the boat velocity vector relative to the bank is the sum of of the boat velocity vector relative to the water and the water velocity vector relative to the bank. Since these 2 component vectors are perpendicular to each other, the magnitude of the total vector can be calculated using Pythagorean formula:
m/s
Answer: Energy
Explanation: The ability to do work or cause change is called energy. Energy comes from many sources, and is found in two main forms. One form, potential energy, is energy that has the potential, in an object at rest, to do work later. An example of this would be a car parked at the top of a hill with its brakes on.
To develop the problem we will start by finding the energy taken by each cycle through the efficiency of the motor and the exhausted energy. Later the work will be found for the conservation of energy in which this is equivalent to the difference between the two calculated energy values. Finally the estimated time will be calculated with the work and the power given,








PART A)
Work done by the heat engine in each cycle = W



According to the value given we have that,


Power is defined as the variation of energy as a function of time therefore,




Therefore the interval for each cycle is 0.75s