Answer:
the final temperature = 74.33°C
Explanation:
Using the expression Q = mcΔT for the heat transfer and the change in temperature .
Here ;
Q = heat transfer
m = mass of substance
c = specific heat
ΔT = the change in temperature
The heat Q required to change the phase of a sample mass m is:
Q = m
where;
is the latent heat of vaporization.
From the question ;
Let M represent the mass of the coffee that remains after evaporation is:
ΔT = 
where;
m = 2.50 g
M = (240 - 2.50) g = 237.5 g
= 539 kcal/kg
c = 1.00kcal/kg. °C
ΔT = 
ΔT = 5.67°C
The final temperature of the coffee is:
ΔT
where ;
= initial temperature = 80 °C
= (80 - 5.67)°C
= 74.33°C
Thus; the final temperature = 74.33°C
B i think ........................
Answer:
Explanation:
Givens
m = 942
F = 6731
t = 21 seconds
vi = 0
vf = ?
Formula
F = m * (vf - vi ) / t
Solution
6731 = 942*(vf - 0)/21 Multiply both sides by 21
6731 * 21 = 942*vf
141351 = 942*vf Divide by 942
141351/942 = vf
vf = 151 m/s
Answer:
the work required to turn the crank at the given revolutions is 8,483.4 J
Explanation:
Given;
torque required to turn the crank, T = 4.50 N.m
number of revolutions, = 300 turns
The work required to turn the crank is given as;
W = 2πT
W = 2 x 3.142 x 4.5
W = 28.278 J
1 revolution = 28.278 J
300 revlotions = ?
= 300 x 28.278 J
= 8,483.4 J
Therefore, the work required to turn the crank at the given revolutions is 8,483.4 J
The magnitude of the current in wire 3 is 2.4 A and in a direction pointing in the downward direction.
- The force per unit length between two parallel thin current-carrying
and
wires at distance ' r ' is given by
....(1) .
- If the current is flowing in both wires in the same direction, and the force between them will be the attractive force and if the current is flowing in opposite direction in wires then the force between them will be the repulsive force.
A schematic of the information provided in the question can be seen in the image attached below.
From the image, force on wire 2 due to wire 1 = force on wire 2 due to wire 3

Using equation (1) , we get

I₃ = 2.4 A and the current is pointing in the downward direction
Learn more about the magnitude and direction of forces here:
brainly.com/question/14879801?referrer=searchResults
#SPJ4