1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlada-n [284]
4 years ago
10

Physical science help!

Physics
1 answer:
Scrat [10]4 years ago
3 0

Answer:

Let's begin by explaining that the <u>electromagnetic spectrum</u> is the set of electromagnetic radiations distributed in their different frequencies or wavelengths. So, if we go from the smallest wavelengths known up to now (because according to physics the electromagnetic spectrum is infinite and continuous) to the longest, the electromagnetic spectrum covers the following radiations:  

Gamma rays, X-rays, ultraviolet, visible light, infrared, radio waves and microwaves:

-Gamma rays: With a wavelength in the order of 10^{-12}m, is a type of ionizing radiation capable of penetrating matter quite deeply and is able to cause serious damage to the nucleus of the cells.

-X rays: With a wavelength between 1m and 10km. It is invisible to the human eye, capable of crossing opaque bodies and is also an ionizing radiation.

-Ultraviolet light (UV): Whose wavelength is approximately between 100 nm and 380 nm; is a type of electromagnetic radiation that is not visible to the human eye.  

-Visible light: This part of the spectrum is located between ultraviolet light and infrared light (400 nm - 800 nm). It should be noted, the fact the only part of the whole electromagnetic spectrum is visible to humans is because the receptors in our eyes are only sensitive to these wavelengths.

-Infrared: This type of radiation is not visible to the human eye, since its wavelengths are outside the visible spectrum (between 700 nm and 1 mm).  

These waves can be divided into:  

- Near infrared or long wave infrared: it is the least sensitive to color and is easily absorbed by water.  

- Medium or medium wave infrared: it is also insensitive to color and easily absorbed by water and many types of plastics and paints.  

- Far infrared or short wave infrared: it is more penetrating than the long wave and is good for heating metals, these waves also can pass through clear materials.  

This light has many uses, including heating lamps in physiotherapy and medical treatments, heat sensing devices, among others.

-Radio waves: This is a type of electromagnetic radiation with wavelengths between 10 m to 10,000 m. This type of electromagnetic waves is very well reflected in the ionosphere, the layer of the atmosphere through which they travel directly or using repeaters. In addition, this radiation is important in telecommunications.

You might be interested in
Many of the whales in the ocean rely upon tiny marine organisms, called plankton, for food. If all of the plankton suddenly died
exis [7]

Answer:

I believe the answer to be B.

Explanation:

Without food, the whales would die.

8 0
3 years ago
1. A sprinter races in the 100 meter dash. It takes him 10 second to reach the finish line
poizon [28]

Answer:

v = 10 m/s

Explanation:

Given that,

Distance covered by a sprinter, d = 100 m

Time taken by him to reach the finish line, t = 10 s

We need to find his average velocity. We know that velocity is equal to the distance covered divided by time taken. So,

v = d/t

v=\dfrac{100\ m}{10\ s}\\\\v=10\ m/s

Hence, his average velocity is 10 m/s.

6 0
3 years ago
Which type of radiation travels at the speed of light and penetrates matter easily?
goblinko [34]
The radiation is ultra voilet or Gamma radiation , because their wave length is very short i e 1..0 to 2.5 (angstrom)Ao.
7 0
4 years ago
Read 2 more answers
A diver jumps off a cliff 50m high and needs to clear the rock that extend outward 5.0m from the base of the cliff. The diver ju
igor_vitrenko [27]

Answer:

He should run at least at 1.5 m/s

The diver will enter the water at an angle of 87° below the horizontal.

Explanation:

Hi there!

The position and velocity of the diver are given by the following vectors:

r = (x0 + v0x · t, y0 + v0y · t + 1/2 · g · t²)

v = (v0x, v0y + g · t)

Where:

r = position vector at time t

x0 = initial horizontal position

v0x = initial horizontal velocity

t = time

y0 = initial vertical position

v0y = initial vertical velocity

g = acceleration due to gravity (-9.8 m/s² considering the  upward direction as positive)

v = velocity vector at time t

Please, see the attached figure for a description of the problem. Notice that the origin of the frame of reference is located at the jumping point so that x0 and y0 = 0.

We know that, to clear the rocks, the position vector r final (see figure) should be:

r final = ( > 5.0 m, -50 m)

So let´s find first at which time the y-component of the vector r final is - 50 m:

y = y0 + v0y · t + 1/2 · g · t²

-50 m = 2.1 m/s · t - 1/2 · 9.8 m/s² · t²

0 = -4.9 m/s² · t² + 2.1 m/s · t + 50 m

Solving the quadratic equation

t = 3.4 s

Now, we can calculate the initial horizontal velocity using the equation of the x-component of the position vector knowing that at t =3.4 the horizontal component should be greater than 5.0 m:

x = x0 + v0x · t      (x0 = 0)

5.0 m < v0x · 3.4 s

v0x > 5.0 m / 3.4 s

v0x > 1.5 m/s

The initial horizontal velocity should be greater than 1.5 m/s

To find the angle at which the diver enters the water, we have to find the magnitude of the final velocity (vector vf in the figure). We already know the magnitude of the x-component of the vector vf, since the horizontal velocity is constant. So:

vfx > 1.5 m/s

Now, let´s calculate vfy:

vfy = v0y + g · t

vfy = 2.1 m/s - 9.8 m/s² · 3.4 s

vfy = -31 m/s

Let´s calculate the minimum magnitude that the final velocity will have if the diver safely clears the rocks. Let´s consider the smallest value allowed for vfx: 1.5 m/s. Then:

|v| = \sqrt{(1.5 m/s)^{2} + (31m/s)^{2}} = 31 m/s

Then the final velocity of the diver will be greater or equal than 31 m/s.

To find the angle, we have to use trigonometry. Notice in the figure that the vectors vf, vfx and vy form a right triangle in which vf is the hypotenuse, vfx is the adjacent side and vfy is the opposite side to the angle. Then:

cos θ = adjacent / hypotenuse = vfx / vf = 1.5 m/s / 31 m/s

θ = 87°

The diver will enter the water at an angle of 87° below the horizontal.

8 0
3 years ago
Identify each part of this chemical equation that describes the burning of methane and oxygen. B (blue box): D (number): E (purp
Allushta [10]

Answer:

The correct answer is -

A (the entire green box): Chemical Equation

B (the blue box): Reactants

C (the arrow): Reacts to Form

D (the number): Coefficient

E (the purple box): Products

Explanation:

The chemical reaction of burning methane and oxygen is as follows;

Here, the green part A is the chemical equation that includes various parts that are reactants B, methane, and oxygen, C is an arrow that indicates the formation of products.

2 is here coefficient that indicates the moles of the oxygen which forms carbon dioxide and water in box E is products

5 0
3 years ago
Other questions:
  • Do you know which component of the Star Wars movies is possible according to our current understanding of physics?
    9·1 answer
  • How Is budding different from fertilization
    5·1 answer
  • Explain the difference between si base units and derived units. give an example of each
    6·1 answer
  • Differences Between light year and astronomical unit in two points .
    11·1 answer
  • A boy shoves his stuffed toy zebra, which has mass m, down a frictionless chute, starting at a height D above the bottom of the
    5·1 answer
  • A positive test charge q is released from rest at distance r away from a charge of Q and a distance 2r away from a charge of 2Q.
    8·1 answer
  • A proton (mass m = 1.67 × 10-27 kg) is being accelerated along a straight line at 2.50 × 1012 m/s2 in a machine. If the proton h
    7·1 answer
  • What happens to the air temperature of a descending mass of air?
    15·1 answer
  • A car has an initial velocity of +30.0 m/s and undergoes an acceleration of -5.00 m/s squared for 5.00 seconds what is the displ
    7·1 answer
  • How fast should a girl of 35 kg run so that her kinetic energy becomes 700J<br> of?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!