Answer:
The average death rate for this type of event is closest to 350 people per event.
Explanation:
Between the years 2048 and 2057
Is 10 years. Since there is only one chance of event between these years, there is no point to consider it.
The total number of events = 2940 chances.
average death rate per event = total number of dead people divided by total number of events of occurrence.
1000000/2940 = 340.134
The average death rate for this type of event is therefore closest to 350 people per event
Answer:
distance is 13 m for 100 dB
distance is 409 km for 10 dB
Explanation:
Given data
distance r = 2.30 m
source β = 115 dB
to find out
distance at sound level 100 dB and 10 dB
solution
first we calculate here power and intensity and with this power and intensity we will find distance
we know sound level β = 10 log(I/
) ......................a
put here value (I/
) = 10^−12 W/m² and β = 115
115 = 10 log(I/10^−12)
so
I = 0.316228 W/m²
and we know power = intensity × 4π r² ...............b
power = 0.316228 × 4π (2.30)²
power = 21.021604 W
we know at 100 dB intensity is 0.01 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 0.01 × 4π r²
so by solving r
r = 12.933855 m = 13 m
distance is 13 m
and
at 10 dB intensity is 1 × 10^–11 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 1 × 10^–11 × 4π r²
by solving r we get
r = 409004.412465 m = 409 km
The tension in the upper rope is determined as 50.53 N.
<h3>Tension in the upper rope</h3>
The tension in the upper rope is calculated as follows;
T(u) = T(d)+ mg
where;
- T(u) is tension in upper rope
- T(d) is tension in lower rope
T(u) = 12.8 N + 3.85(9.8)
T(u) = 50.53 N
Thus, the tension in the upper rope is determined as 50.53 N.
Learn more about tension here: brainly.com/question/918617
#SPJ1
Answer:
Explanation:
Let v be the velocity acquired by electron in electric field
V q = 1/2 m v²
V is potential difference applied on charge q , m is mass of charge , v is velocity acquired
2400 x 1.6 x 10⁻¹⁹ = .5 x 9.1 x 10⁻³¹ x v²
v² = 844 x 10¹²
v = 29.05 x 10⁶ m /s
Maximum force will be exerted on moving electron when it moves perpendicular to magnetic field .
Maximum force = Bqv , where B is magnetic field , q is charge on electron and v is velocity of electron
= 1.7 x 1.6 x 10⁻¹⁹ x 29.05 x 10⁶
= 79.02 x 10⁻¹³ N .
Minimum force will be zero when electron moves along the direction of magnetic field .
Answer:
little/no
Explanation:
Conductors are materials, which conduct electricity and/or heat. That means, that their resistance to such energy is so little, that an electric current is able to pass through.