Answer:
Here's what I get
Explanation:
SbCl₃ reacts with water to form slightly soluble antimony oxychloride.
SbCl₃(aq) +H₂O(ℓ) ⇌ SbOCl(s) + 2HCl(aq)
Your observation is an example of Le Châtelier's Principle in action,
The SbCl₃(aq) in your lab has enough HCl added to push the position of equilibrium to the left and keep the SbOCl in solution.
If a few drops of the SbCl₃(aq) were added to 300 mL of water, the solution would turn cloudy. The HCl would be so dilute that the position of equilibrium would lie to the right, and a cloudy precipitate of antimony oxychloride would form.
Answer:
B. 4 ml
Explanation:
Volume displacement of the hammer = volume volume of water when the hammer was placed into the cylinder - volume of water only before the hammer was placed into the cylinder.
Volume volume of water when the hammer was placed into the cylinder = 69 ml
Volume of water only before the hammer was placed into the cylinder = 65 ml
Volume displacement of the hammer = 69 ml - 65 ml = 4 ml
Yes layers of sediment form at the bottom of the ocean.
Answer:
0.238 M
Explanation:
A 17.00 mL sample of the dilute solution was found to contain 0.220 M ClO₃⁻(aq). The concentration is an intensive property, so the concentration in the 52.00 mL is also 0.220 M ClO₃⁻(aq). We can find the initial concentration of ClO₃⁻ using the dilution rule.
C₁.V₁ = C₂.V₂
C₁ × 24.00 mL = 0.220 M × 52.00 mL
C₁ = 0.477 M
The concentration of Pb(ClO₃)₂ is:

Answer: The concentration of KOH for the final solution is 0.275 M
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution.

where,
n = moles of solute
= volume of solution in ml = 150 ml
moles of solute =
Now put all the given values in the formula of molality, we get

According to the dilution law,

where,
= molarity of stock solution = 1.19 M
= volume of stock solution = 15.0 ml
= molarity of diluted solution = ?
= volume of diluted solution = 65.0 ml
Putting in the values we get:


Therefore, the concentration of KOH for the final solution is 0.275 M