Answer:
1.43 grams
Explanation:
Fe = 55.8 grams Fe = 1 mole Fe
2.56 • 10^-3 moles Fe / 1 • 55.8 grams Fe / 1 mole Fe = 1.43 grams Fe
Basically, you're just multiplying the molar mass of Fe (iron) by the moles of 2.56 • 10^-3 Fe, to find how many grams are in it.
2.56 • 10^-3 moles Fe = 1.43 grams Fe
<u>Answer:</u> The final pressure of the gas is 9.41 atm
<u>Explanation:</u>
To calculate the pressure of the gas, we use the equation given by ideal gas equation:

where,
P = pressure of the gas = ?
V = Volume of gas =
(Conversion factor:
)
n = Number of moles = 0.01 mol
R = Gas constant = 
T = temperature of the gas = ![300^oC=[300+273]K=573K](https://tex.z-dn.net/?f=300%5EoC%3D%5B300%2B273%5DK%3D573K)
Putting values in above equation, we get:

Hence, the final pressure of the gas is 9.41 atm
Answer:
19.5
Explanation: using dalton law pt=p1+p2+p3...
the total pressure is 37.9 so to get pressure of gas b subtract pressure of gas a from total pressure.37.9-18.4 gas b equals 19.5
<u>Answer:</u> The electronic configuration of the elements are written below.
<u>Explanation:</u>
Electronic configuration is defined as the representation of electrons around the nucleus of an atom.
Number of electrons in an atom is determined by the atomic number of that atom.
For the given options:
- <u>Option a:</u> Carbon (C)
Carbon is the 6th element of the periodic table. The number of electrons in carbon atom are 6.
The electronic configuration of carbon is 
- <u>Option b:</u> Phosphorus (P)
Phosphorus is the 15th element of the periodic table. The number of electrons in phosphorus atom are 15.
The electronic configuration of phosphorus is 
- <u>Option c:</u> Vanadium (V)
Vanadium is the 23rd element of the periodic table. The number of electrons in vanadium atom are 23.
The electronic configuration of vanadium is 
- <u>Option d:</u> Antimony (Sb)
Antimony is the 51st element of the periodic table. The number of electrons in antimony atom are 51.
The electronic configuration of antimony is 
- <u>Option e:</u> Samarium (Sm)
Samarium is the 62nd element of the periodic table. The number of electrons in samarium atom are 62.
The electronic configuration of samarium is 
Hence, the electronic configuration of the elements are written above.
<span>6 + x = 12. To evaluate an algebraic expression, you have to substitute a number for each variable and perform the arithmetic operations. In the example above, the variable x is equal to 6 since 6 + 6 = 12. If we know the value of our variables, we can replace the variables with their values and then evaluate the expression.</span>