Answer:
Hey, I'll help but I don't know what your options are.
Explanation:
Answer: The coefficient in front of AgCl when the equation is properly balanced is 2.
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Decomposition is a type of chemical reaction in which one reactant gives two or more than two products.
Decomposition of silver chloride is represented as:

Thus the coefficient in front of AgCl when the equation is properly balanced is 2.
I think its the mirror because condenser helps in allowing the amount of light to pass.
I would say that what conserving mass in a chemical equation means is that C. There is equal number of each type of atom on the reactant side and product side.
The equation is equal and no material is lost or gained.
When the value of Ksp = 3.83 x 10^-11 (should be given - missing in your Q)
So, according to the balanced equation of the reaction:
and by using ICE table:
Ag2CrO4(s) → 2Ag+ (Aq) + CrO4^2-(aq)
initial 0 0
change +2X +X
Equ 2X X
∴ Ksp = [Ag+]^2[CrO42-]
so by substitution:
∴ 3.83 x 10^-11 = (2X)^2* X
3.83 x 10^-11 = 4 X^3
∴X = 2.1 x 10^-4
∴[CrO42-] = X = 2.1 x 10^-4 M
[Ag+] = 2X = 2 * (2.1 x 10^-4)
= 4.2 x 10^-4 M
when we comparing with the actual concentration of [Ag+] and [CrO42-]
when moles Ag+ = molarity * volume
= 0.004 m * 0.005L
= 2 x 10^-5 moles
[Ag+] = moles / total volume
= 2 x 10^-5 / 0.01L
= 0.002 M
moles CrO42- = molarity * volume
= 0.0024 m * 0.005 L
= 1.2 x 10^-5 mol
∴[CrO42-] = moles / total volume
= (1.2 x 10^-5)mol / 0.01 L
= 0.0012 M
by comparing this values with the max concentration that is saturation in the solution
and when the 2 values of ions concentration are >>> than the max values o the concentrations that are will be saturated.
∴ the excess will precipitate out