<span>y = 3x - 7
3 = slope
-7 = y intercept
This line would cross the y intercept at -7, and go up by 3 (slope). </span>
keeping in mind that perpendicular lines have negative reciprocal slopes, hmmm what's the slope of the equation above anyway?
![\bf y = \cfrac{2}{3}x\implies y = \stackrel{\stackrel{m}{\downarrow }}{\cfrac{2}{3}}x+0\qquad \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20y%20%3D%20%5Ccfrac%7B2%7D%7B3%7Dx%5Cimplies%20y%20%3D%20%5Cstackrel%7B%5Cstackrel%7Bm%7D%7B%5Cdownarrow%20%7D%7D%7B%5Ccfrac%7B2%7D%7B3%7D%7Dx%2B0%5Cqquad%20%5Cimpliedby%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20slope-intercept~form%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y%3D%5Cunderset%7By-intercept%7D%7B%5Cstackrel%7Bslope%5Cqquad%20%7D%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bm%7Dx%2B%5Cunderset%7B%5Cuparrow%20%7D%7Bb%7D%7D%7D%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \stackrel{\textit{perpendicular lines have \underline{negative reciprocal} slopes}} {\stackrel{slope}{\cfrac{2}{3}}\qquad \qquad \qquad \stackrel{reciprocal}{\cfrac{3}{2}}\qquad \stackrel{negative~reciprocal}{-\cfrac{3}{2}}}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Bperpendicular%20lines%20have%20%5Cunderline%7Bnegative%20reciprocal%7D%20slopes%7D%7D%20%7B%5Cstackrel%7Bslope%7D%7B%5Ccfrac%7B2%7D%7B3%7D%7D%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cstackrel%7Breciprocal%7D%7B%5Ccfrac%7B3%7D%7B2%7D%7D%5Cqquad%20%5Cstackrel%7Bnegative~reciprocal%7D%7B-%5Ccfrac%7B3%7D%7B2%7D%7D%7D)
so we're really looking for the equation of a line whose slope is -3/2 and runs through (0,0).
![\bf (\stackrel{x_1}{0}~,~\stackrel{y_1}{0})~\hspace{10em} \stackrel{slope}{m}\implies -\cfrac{3}{2} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{0}=\stackrel{m}{-\cfrac{3}{2}}(x-\stackrel{x_1}{0})\implies y=-\cfrac{3}{2}x](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B0%7D~%2C~%5Cstackrel%7By_1%7D%7B0%7D%29~%5Chspace%7B10em%7D%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20-%5Ccfrac%7B3%7D%7B2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-%5Cstackrel%7By_1%7D%7B0%7D%3D%5Cstackrel%7Bm%7D%7B-%5Ccfrac%7B3%7D%7B2%7D%7D%28x-%5Cstackrel%7Bx_1%7D%7B0%7D%29%5Cimplies%20y%3D-%5Ccfrac%7B3%7D%7B2%7Dx)
Answer:
37.5 acres.
Step-by-step explanation:
Fraction of his land where vegetables are grown
= 1 - 1/3 - 2/3 *3/5
(after taking away 1/3 we get 2/3 and the farmer uses 3/5 of this 2/3 to grow Maize.
= 1 - 1/3 - 6/15 LCD of 3 and 15= 15 so we write:
= 1 - 5/15 - 6/15
= 1 - (5+6)/16
= 1 - 11/15
= 4/15.
4 /15 is equivalent to 10 acres
so total area (= 1) = 10 / 4/15 Invert the 4/15 and multiply:
= 10 * 15/4
= 150/4
= 37.5 acres.
Answer:
AMY
BMY
BMX
Step-by-step explanation:
I took the assignment