This is a problem of conditional probability that can be calculated by the formula:
P(B | A) = P(A ∩ B) / P(A)
We know that:
- between 1 and 50 there are 41 two-digit numbers, therefore
P(A) = 41/50 = 0.82
- between 1 and 50 there are 8 multiples of six, therefore
P(B) = 8/50 = 0.16
- <span>between 1 and 50 there are 7 two-digits mutiples of six, therefore
P(A ∩ B) = 7/50 = 0.14
Now, we can calculate:
</span>P(B | A) = P(A <span>∩ B) / P(A)
= 0.14 / 0.82
= 0.17
Therefore, the probability of getting a multiple of 6 if we draw a two-digit number is 17%.</span>
Answer: To add or subtract radicals, the indices and what is inside the radical (called the radicand) must be exactly the same. If the indices and radicands are the same, then add or subtract the terms in front of each like radical. If the indices or radicands are not the same, then you can not add or subtract the radicals.
15x<130+20, 15x<150 divided both sides by 15 ,the answer is 10