Answer:
Explanation:
Total heat = Work done = Force × distance
distance = 0.075 × 12 = 0.9 m
W = 45 × 0.9 = 40.5 joules
Specific heat of the human hand = 3.5 kj/kg = 3.5 j/g
Q = MCΔT
ΔT = (Q) ÷ (MC)
ΔT = 40.5 ÷ (3.5 × 1) = 11.57°C
It depends on your definition of “ancient.” Radiometric dating using Carbon-14 can reliably date back to about 50,000 years, uranium-lead or lead-lead dating can date back multiple millions, potassium-argon dating can reach 1.5 billion, and rubidium-strontium can reach 50 billion (nearly 4x the age of the universe). It depends on the context in which this question is being asked.
Answer:
Professor Hawking had just turned 21 when he was diagnosed with a very rare slow-progressing form of ALS, a form of motor neurone disease (MND). He was at the end of his time at Oxford when he started to notice early signs of his disease. He was getting more clumsy and fell over several times without knowing why.
Explanation:
none
Answer:

Explanation:
Given that:
- Area of the plate of capacitor 1= Area of the plate of capacitor 2=A
- separation distance of capacitor 2,

- separation distance of capacitor 1,

- quantity of charge on capacitor 2,

- quantity of charge on capacitor 1,

We know that the Capacitance of a parallel plate capacitor is directly proportional to the area and inversely proportional to the distance of separation.
Mathematically given as:
.....................................(1)
where:
k = relative permittivity of the dielectric material between the plates= 1 for air

From eq. (1)
For capacitor 2:

For capacitor 1:

![C_1=\frac{1}{2} [ \frac{k.\epsilon_0.A}{d}]](https://tex.z-dn.net/?f=C_1%3D%5Cfrac%7B1%7D%7B2%7D%20%5B%20%5Cfrac%7Bk.%5Cepsilon_0.A%7D%7Bd%7D%5D)
We know, potential differences across a capacitor is given by:
..........................................(2)
where, Q = charge on the capacitor plates.
for capacitor 2:


& for capacitor 1:


![V_1=8\times [\frac{Q.d}{k.\epsilon_0.A}]](https://tex.z-dn.net/?f=V_1%3D8%5Ctimes%20%5B%5Cfrac%7BQ.d%7D%7Bk.%5Cepsilon_0.A%7D%5D)

Answer:
Explanation:
We shall show all given data in vector form and calculate the direction of force with the help of following formula
force F = q ( v x B )
q is charge , v is velocity and B is magnetic field.
Given B = - Bk ( i is right , j is upwards and k is straight up the page )
v = v j
F = q ( vj x - Bk )
= -Bqvi
The direction is towards left .
a ) If velocity is down
v = - v j
F = q ( - vj x - bk )
= qvB i
Direction is right .
b ) v = v i
F = q ( vi x - Bk )
= qvB j
force is upwards
c ) v = - vi
F = q ( -vi x - Bk )
= -qvBj
force is downwards
d ) v = - v k
F = q( - vk x -Bk )
= 0
No force will be created
e ) v = v k
F = q( vk x -Bk )
= 0
No force will be created