The mass of a radioactive element at time t is given by
where
is the mass at time zero, while
is the half-life of the element.
In our problem,
, t=121.0 s and
, so we can find the initial mass
:
Answer:
Its heat capacity is higher than that of any other liquid or solid, its specific heat being 1 cal / g, this means that to raise the temperature of 1 g of water by 1 ° C it is necessary to provide an amount of heat equal to a calorie . Therefore, the heat capacity of 1 g of water is equal to 1 cal / K.
Explanation:
The water has a very high heat capacity, a large amount of heat is necessary to raise its temperature 1.0 ° K. For biological systems this is very important because the cellular temperature is modified very little in response to metabolism. In the same way, aquatic organisms, if water did not possess that quality, would be very affected or would not exist.
This means that a body of water can absorb or release large amounts of heat, with little temperature change, which has a great influence on the weather (large bodies of water in the oceans take longer to heat and cool than the ground land). Its latent heats of vaporization and fusion (540 and 80 cal / g, respectively) are also exceptionally high.
Answer:
The magnitude of the tension in he string is equal to the magnitude of the weight of the object.
Explanation:
According to the Newton's 1st law, An object will remain at rest or in uniform motion in a straight line unless acted upon by an unbalanced force.
In here, the elevator is moving with a constant speed. So the object must have the equal constant speed. Which means, it has a uniform motion. According to Newton's 1st law, the total unbalanced force on the object must be zero . As we know, there are only two forces are on the object and they are,
The tension in string(T) , The weight of the object(W) .
∴ F = 0
T - W = 0
So to balanced those forces, the magnitude of the tension in the string must be equal to the magnitude of the weight of the object.