Answer:
.
Step-by-step explanation: Given radical expression
.
According to the product property of roots.
![\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{a \times b}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%7D%20%5Ctimes%20%5Csqrt%5Bn%5D%7Bb%7D%20%3D%20%5Csqrt%5Bn%5D%7Ba%20%5Ctimes%20b%7D)
On applying above rule, we get
![\sqrt[3]{5x} \times \sqrt[3]{25x^2} = \sqrt[3]{5x \times 25x^2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B5x%7D%20%5Ctimes%20%5Csqrt%5B3%5D%7B25x%5E2%7D%20%3D%20%5Csqrt%5B3%5D%7B5x%20%5Ctimes%2025x%5E2%7D)
5 × 25 = 125 and

Therefore,
![\sqrt[3]{5x \times 25x^2}= \sqrt[3]{125x^3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B5x%20%5Ctimes%2025x%5E2%7D%3D%20%5Csqrt%5B3%5D%7B125x%5E3%7D)
<h3>So, the correct option would be second option
![\sqrt[3]{125x^3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B125x%5E3%7D)
.</h3>
<h3>
Answer: </h3>
approximately 36.633 cm if you use pi = 3.14
approximately 36.6519 cm if you use the calculator's stored value of pi
Work Shown:
L = arc length, r = radius, x = central angle in degrees
L = (x/360)*2*pi*r
L = (300/360)*2*pi*7
L = (35/3)pi .... exact arc length in terms of pi
L = (35/3)*3.14
L = 36.633 .... approximate arc length
Keep in mind that I used pi = 3.14 which isn't that great an approximation for pi. If you want to use more digits of pi, then use your calculator's built in version of it to get (35/3)*pi = 36.6519; of course it will depend on which option your teacher prefers.
Answer:
a: 20
b : 15
Step-by-step explanation:
3*5 = 15
2*5 = 10
15-10 = 5
15+5 = 20
10+5 = 15