Answer:
m = 15.15 kg
Explanation:
Newton's Second Law of motion states that when an unbalanced force is applied on a body, an acceleration is produced in it in the direction of force. The component of force along the horizontal direction here, will be given by the Newton's Second Law as:
Fx = ma
F Cosθ = ma
where,
F = Magnitude of Force = 85 N
θ = Angle with horizontal = 27°
m = mass of object = ?
a = acceleration of object = 5 m/s²
Therefore,
85 N Cos 27° = m(5 m/s²)
m = 75.73 N/5 m/s²
<u>m = 15.15 kg</u>
When it's at its highest temperature
(a) The stone moves by uniform accelerated motion, with constant acceleration

directed downwards, and its initial vertical position at time t=0 is 750 m. So, the vertical position (in meters) at any time t can be written as

(b) The time the stone takes to reach the ground is the time at which the vertical position of the stone becomes zero: y(t)=0. So, we can write

from which we find the time t after which the stone reaches the ground:

(c) The velocity of the stone at time t can be written as

because it is an accelerated motion with initial speed zero. Substituting t=12.37 s, we find the final velocity of the stone:

(d) if the stone has an initial velocity of

, then its law of motion would be

and we can find the time it needs to reach the ground by requiring again y(t)=0:

which has two solutions: one is negative so we neglect it, while the second one is t=11.78 s, so this is the time after which the stone reaches the ground.
The volkswagon experiences a greater force as it was hit by a larger object that had a larger mass than itself
Answer:
Explanation:
is there more to the problem?