1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Art [367]
3 years ago
13

When does water reach its lowest density?

Physics
1 answer:
Over [174]3 years ago
4 0
When it's at its highest temperature
You might be interested in
What is the speed of a bobsled whose distance-time graph indicates that it traveled 114m in 30s? m/s
Kitty [74]
3.8 m/s
--------------
5 0
2 years ago
Energy in motion is _____ energy. potential scientific kinetic
Ket [755]

Answer:

kinetic energy

Explanation:

4 0
3 years ago
Read 2 more answers
Now she is out on a hike and comes to the left bank of a river. There is no bridge and the right bank is 10.0 mm away horizontal
Harrizon [31]

Answer:

a. 8.96 m/s b. 1.81 m

Explanation:

Here is the complete question.

a) A long jumper leaves the ground at 45° above the horizontal and lands 8.2 m away.

What is her "takeoff" speed  v 0 ?

b) Now she is out on a hike and comes to the left bank of a river. There is no bridge and the right bank is 10.0 m away horizontally and 2.5 m, vertically below.  

If she long jumps from the edge of the left bank at 45° with the speed calculated in part a), how long, or short, of the opposite bank will she land?

a. Since she lands 8.2 m away and leaves at an angle of 45 above the horizontal, this is a case of projectile motion. We calculate the takeoff speed v₀ from R = v₀²sin2θ/g. where R = range = 8.2 m.

So, v₀ = √gR/sin2θ = √9.8 × 8.2/sin(2×45) = √80.36/sin90 = √80.36 = 8.96 m/s.

b. We use R = v₀²sin2θ/g to calculate how long or short of the opposite bank she will land. With v₀ = 8.96 m/s and θ = 45

R = 8.96²sin(2 × 45)/9.8 = 80.2816/9.8 = 8.192 m.

So she land 8.192 m away from her bank. The distance away from the opposite bank she lands is 10 - 8.192 m = 1.808 m ≅ 1.81 m

8 0
3 years ago
You adjust the temperature so that a sound wave travels more quickly through the air. You increase the temperature from 30°C to
earnstyle [38]

The correct answer to the question is : D) 352.6 m/s.

CALCULATION :

As per the question, the temperature is increased from 30 degree celsius to 36 degree celsius.

We are asked to calculate the velocity of sound at 36 degree celsius.

Velocity of sound is dependent on temperature. More is the temperature, more is velocity of sound.

The velocity at this temperature is calculated as -

                            V = 331  + 0.6T m/s

                               = 331 + 0.6 × 36 m/s

                               = 331 + 21.6 m/s

                               = 352.6 m/s.

Here, T denotes the temperature of the surrounding.

Hence, velocity of the sound will be 352.6 m/s.

5 0
3 years ago
Read 2 more answers
A box is being pulled to the right. What is the magnitude of the Kinect frictional force?
Anna35 [415]
The answer to this question is A - 25 N
3 0
2 years ago
Read 2 more answers
Other questions:
  • The maximum amount of pulling force a truck can apply when driving on
    11·1 answer
  • Which state law would be considered unconstitutional based on the Fourteenth Amendment?
    5·1 answer
  • A 1.35 kg block at rest on a tabletop is attached to a horizontal spring having constant 19.8 n/m. the spring is initially unstr
    15·1 answer
  • Which of these equations is dimensionally correct?
    14·1 answer
  • This direct relationship graph shows that the position of the car as time elapses.
    9·1 answer
  • What is A rounded to the nearest tenth?
    12·1 answer
  • Which equation best summarizes Newton’s 2nd law:
    13·1 answer
  • <img src="https://tex.z-dn.net/?f=%20%5Csf%20%7B%20%5Cfcolorbox%7Bgreen%7D%7Bg%7D%7B%20What%20are%20impulses%3F%7D%7D%20" id="Te
    11·1 answer
  • Jose was out drinking with his friends for nearly the whole night. The next morning he was confused and vomiting, and had a low
    5·1 answer
  • How high would a projectile go if it was launched from ground level with an initial speed of 26 m/s at an angle of 30 degrees ab
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!