Answer:
270 m/s²
Explanation:
Given:
α = 150 rad/s²
ω = 12.0 rad/s
r = 1.30 m
Find:
a
The acceleration will have two components: a radial component and a tangential component.
The tangential component is:
at = αr
at = (150 rad/s²)(1.30 m)
at = 195 m/s²
The radial component is:
ar = v² / r
ar = ω² r
ar = (12.0 rad/s)² (1.30 m)
ar = 187.2 m/s²
So the magnitude of the total acceleration is:
a² = at² + ar²
a² = (195 m/s²)² + (187.2 m/s²)²
a = 270 m/s²
Let us consider two bodies having masses m and m' respectively.
Let they are separated by a distance of r from each other.
As per the Newtons law of gravitation ,the gravitational force between two bodies is given as -
where G is the gravitational force constant.
From the above we see that F ∝ mm' and 
Let the orbital radius of planet A is
= r and mass of planet is
.
Let the mass of central star is m .
Hence the gravitational force for planet A is 
For planet B the orbital radius
and mass
Hence the gravitational force 
![f_{2} =G\frac{m*3m_{1} }{[2r_{1}] ^{2} }](https://tex.z-dn.net/?f=f_%7B2%7D%20%3DG%5Cfrac%7Bm%2A3m_%7B1%7D%20%7D%7B%5B2r_%7B1%7D%5D%20%5E%7B2%7D%20%7D)

Hence the ratio is 
[ ans]
Answer:
T = 692.42 N
Explanation:
Given that,
Mass of hammer, m = 8.71 kg
Length of the chain to which an athlete whirls the hammer, r = 1.5 m
The angular sped of the hammer, 
We need to find the tension in the chain. The tension acting in the chain is balanced by the required centripetal force. It is given by the formula as follows :

So, the tension in the chain is 692.42 N.