The mass that must be added is 0.628 kg
Explanation:
The period of a mass-spring system is given by

where
m is the mass
k is the spring constant
For the initial mass-spring system in the problem, we have
m = 0.500 kg
T = 1.36 s
Solving for k, we find the spring constant:

In the second part, we want the period of the same system to be
T = 2.04 s
Therefore, the mass on the spring in this case must be

Therefore, the mass that must be added is

Learn more about period:
brainly.com/question/5438962
#LearnwithBrainly
Did you try googling it lol thats what i do if its a problem like that. sometimes there are websites that answer it you just have to look really hard
C because you don’t put a force of which you choose and the force wouldn’t be strong enough
Answer:
w = 706.32 [N]
Explanation:
The force due to gravitational acceleration can be calculated by means of the product of mass by gravitational acceleration.
w = m*g
where:
w = weight [N] (units of Newtons)
m = mass = 72 [kg]
g = gravity acceleration = 9.81 [m/s²]
Then we have:
![w = 72*9.81\\w = 706.32 [N]](https://tex.z-dn.net/?f=w%20%3D%2072%2A9.81%5C%5Cw%20%3D%20706.32%20%5BN%5D)
Answer:
X = 50 g
Explanation:
Please see attached photo for explanation.
From the attached photo,
Anticlock–wise moment = X × 20
Clockwise moment = 100 × 10
Anticlock–wise moment = clockwise moment
X × 20 = 100 × 10
X × 20 = 1000
Divide both side by 20
X = 1000 / 20
X = 50 g
Therefore, the value of X is 50 g