1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wolverine [178]
2 years ago
10

What is the total cost of the menu? The total cost of the menu is $______ (approximately 2 decimal places)

Mathematics
1 answer:
stiks02 [169]2 years ago
5 0

Answer:

4.67

Step-by-step explanation:

0.25 + 0.50 + 0.75 + 1.25 + 1.875 = 4.675

You might be interested in
3a + 2b, when a = 10 and b= 5
tia_tia [17]

Answer:

40

Step-by-step explanation:

3a + 2b =

3(10) + 2(5)

30 + 10 = 40

I hope this helps!

Have a great day!

8 0
2 years ago
Read 2 more answers
Left Wic loves her pet frogs. If she spends $4.92 for a dozen frogs how much would one frog cost Leftwich
blagie [28]

Answer:

$0.41

Step-by-step explanation:

4.92 ÷ 12 = .41 (Look at drawing)

6 0
3 years ago
Read 2 more answers
Use the tangent identity to
Lunna [17]

Answer:

tan(x)=\frac{44\sqrt{89}}{89}

Step-by-step explanation:

tan is defined as: tan(x)=\frac{opposite}{adjacent}

sin is defined as: sin(x)=\frac{opposite}{hypotenuse}

cos is defined as: cos(x)=\frac{adjacent}{hypotenuse}

We can also define tan as: tan(x)=\frac{sin(x)}{cos(x)}

because plugging in the definitions of sin and cos in we get: tan(x)=\frac{(\frac{opposite}{hypotenuse})}{(\frac{adjacent}{hypotenuse})}\\\\tan(x)=\frac{opposite}{hypotenuse}*\frac{hypotenuse}{adjacent}\\\\tan(x)=\frac{opposite}{adjacent}

which you'll notice is the original definition of tan(x)

So using this definition of tan(x) we can use the givens sin(x) and cos(x) to find tan(x)

sin(x)=\frac{44}{45}\\\\cos(x)=\frac{\sqrt{89}}{45}\\\\tan(x)=\frac{sin(x)}{cos(x)}

plugging in sin(x) and cos(x) we get:

tan(x)=\frac{\frac{44}{45}}{\frac{\sqrt{89}}{45}}\\\\tan(x)=\frac{44}{45}*\frac{45}{\sqrt{89}}\\\\tan(x)=\frac{44}{\sqrt{89}}

We usually don't like square roots in the denominator, and from here we want to rationalize the denominator which we do by removing the square root from the denominator.

We can do this by multiplying the fraction by: \frac{\sqrt{89}}{\sqrt{89}} which doesn't change the value of the fraction since it simplifies to 1, but it gets rid of the square root in the denominator

tan(x)=\frac{44}{\sqrt{89}}*\frac{\sqrt{89}}{\sqrt{89}}\\\\tan(x)=\frac{44\sqrt{89}}{89}

5 0
1 year ago
The value of sin(pi/3)cos(pi) is <br> A) -√ 3/2<br> B) 1/2<br> C) -1/2<br> D) 0
noname [10]

take a good peek at  your Unit Circle, if you don't have one, this is a great time to get one, many you can find online, those two angles are pretty well known.


\bf sin\left( \frac{\pi }{3} \right)cos(\pi )\implies \cfrac{\sqrt{3}}{2}\cdot -1\implies -\cfrac{\sqrt{3}}{2}

3 0
3 years ago
Read 2 more answers
Solve the open sentence. –2 ≤ n + 4 ≤ 7
Elena-2011 [213]
-2≤n+4≤7  subtract 4 from all terms

-6≤n≤3 or in interval notation

n=[-6,3]
8 0
3 years ago
Other questions:
  • Suppose the catalog price of an item is $475 and the trade-discount rate is 15%. What is the correct setup to find net price?
    9·1 answer
  • A company had net cash flows from operations of $120,000, cash flows from financing of $330,000, total cash flows if $500,000 an
    9·1 answer
  • Expression written using exponents
    5·1 answer
  • A triangle has one side that measures 5 ft, one side that measures 8 ft, and one side that measures 11 ft.
    14·1 answer
  • I will mark as the brainliest answer
    13·1 answer
  • PLEASER HELP WILL GIVE BRAINLIEST!
    7·1 answer
  • (-9 +4 - -6)<br><br><br> please help me:)
    6·2 answers
  • A rocket is launched vertically from the ground with an initial velocity of 64 ft/sec. A) Write a quadratic function h(t) that s
    13·1 answer
  • How many 6 are in 2/3 pounds?
    7·1 answer
  • Help me PLs..Brainly reward <br><br> -3(x - 4/3) &lt; 6
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!