Recall that
cos²(<em>x</em>) + sin²(<em>x</em>) = 1
Then in the equation
1 - cos(<em>x</em>) = 2 - 2 sin²(<em>x</em>)
we can rewrite as
1 - cos(<em>x</em>) = 2 (1 - sin²(<em>x</em>))
1 - cos(<em>x</em>) = 2 cos²(<em>x</em>)
2 cos²(<em>x</em>) + cos(<em>x</em>) - 1 = 0
Factorize the left side as
(2 cos(<em>x</em>) - 1) (cos(<em>x</em>) + 1) = 0
so that
2 cos(<em>x</em>) - 1 = 0 <u>or</u> cos(<em>x</em>) + 1 = 0
cos(<em>x</em>) = 1/2 <u>or</u> cos(<em>x</em>) = -1
On the interval (-<em>π</em>, <em>π</em>) (note that this interval is open, so we don't allow <em>x</em> = <em>π</em>), we have
• cos(<em>x</em>) = 1/2 for <em>x</em> = <em>π</em>/3 and <em>x</em> = -<em>π</em>/3
• cos(<em>x</em>) = -1 for <em>x</em> = <em>π</em>