Let the two number is a and b
so,
product =ab=20
sum of square=
Then,
•••••••••(equation I)
Now,
••••••••(equation II)
Now,combine the equation I and equation II
we,get
Then,
put the value of a in equation II.
we get that,
<em><u>so</u></em><em><u>,</u></em><em><u> </u></em>
<em><u>The</u></em><em><u> </u></em><em><u>two</u></em><em><u> </u></em><em><u>number</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u> </u></em><em><u>5</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>4</u></em><em><u>.</u></em>
Answer:
Create the table and choose a set of x values. Substitute each x value (left side column) into the equation. Evaluate the equation (middle column) to arrive at the y value. An Optional step, if you want, you can omit the middle column from your table, since the table of values is really just the x and y pairs.
Step-by-step explanation:
Specify a name for the function.
Specify a name and data type for each input parameter.
Specify the routine attributes.
Specify the RETURNS TABLE keyword.
Specify the BEGIN ATOMIC keyword to introduce the function-body.
Specify the function body.
Divide each square into 4 prices and you'll get it
Answer : The specific heat of the metal is, 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of metal = ?
= specific heat of ice = 
= mass of metal = 1.00 kg
= mass of ice = 1.00 kg
= final temperature of mixture = 
= initial temperature of metal = 
= initial temperature of ice = 
Now put all the given values in the above formula, we get:
![(1.00kg)\times c_1\times (-8.88-5.00)^oC=-[(1.00kg)\times 2000J/kg^oC\times (-8.88-(-24.0))^oC]](https://tex.z-dn.net/?f=%281.00kg%29%5Ctimes%20c_1%5Ctimes%20%28-8.88-5.00%29%5EoC%3D-%5B%281.00kg%29%5Ctimes%202000J%2Fkg%5EoC%5Ctimes%20%28-8.88-%28-24.0%29%29%5EoC%5D)

Therefore, the specific heat of the metal is, 
Answer:
154 percent
Step-by-step explanation: