Mg₃N₂ + 6H₂O = 3Mg(OH)₂ + 2NH₃
Answer:
See explanation below
Explanation:
The melting point (the temperature that it changes from solid to liquid) of a pure substance depends on its mass, the forces between its molecules, and the pressure of the system.
The melting point, or the freezing point, of a mixture, is a temperature between the melting point of its components. Salt has a huge negative melting point, so when it is added to the water, the melting point decreases from 0ºC to -21ºC approximately.
So, the water will only freeze again if the temperature becomes below -21ºC which is very difficult to happen.
- The student weighs out 0.0422 grams of the metal magnesium, thus we can figure that the more's, the magnesium he used, is the mass of the magnesium over the more mass, which is 0.024422.
- That is approximately 0.001758.
- Furthermore, it claims that too much hydrochloric acid causes the metal magnesium to react, producing hydrogen gas.
- The volume of collected gas is 43.9 cc, the mastic pressure is 22 cc, and a sample of hydrogen gas is collected over water in a meter.
<h3>Is it true that calculations made utilizing experimental and gathered data result in a percent error? </h3>
- Consequently, we are aware that magnesium and chloride react.
- We create 1 as the reaction ratio is 1:2.
- The hydrogen and 1 are more.
- Magnesium chloride is more.
- Therefore, based on this equation, we can infer that the amount of hydrogen that would be created in this scenario is greater than the amount of magnesium present here, or 0.001758 more.
- Among hydrogen, there is.
- \Once we convert the temperature from 32 Celsius to kelvin, we can tell you that the temperature is actually about 5.15 kelvin.
- The gas has a volume of 43 in m, which is equal to 0.0439 liter and indicates that the pressure is approximately 832 millimeter.
- Mercury, which is 2 times 13332 plus ca, or roughly 110922.24 par, is a mathematical constant.
- So, in this instance, we are aware that p v = n r t.
- The r in this case equals p v over n t, thus we want to determine the r.
- So p is 110922.24. The temperature is 305.15 and the V is 0.04 over the n is 0.001758.
- Let's proceed with the calculations right now.
- In this instance, you will discover that the solution is 9.077 times 10; that is all there is to it.
To learn more about Magnesium chloride reactions visit:
brainly.com/question/27891157
#SPJ4
The ideal gas under STP is 22.4 L/mol. While the gas has a rule of P1V1/T1=P2V2/T2. So the volume under 101 kPa and 273 K is 0.2*22.4=4.48 L.