Answer:
We need 78.9 mL of the 19.0 M NaOH solution
Explanation:
Step 1: Data given
Molarity of the original NaOH solution = 19.0 M
Molarity of the NaOH solution we want to prepare = 3.0 M
Volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
Step 2: Calculate volume of the 19.0 M NaOH solution needed
C1*V1 = C2*V2
⇒with C1 = the concentration of the original NaOH solution = 19.0 M
⇒with V1 = the volume of the original NaOH solution = TO BE DETERMINED
⇒with C2 = the concentration of the NaOH solution we want to prepare = 3.0 M
⇒with V2 = the volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
19.0 M * V2 = 3.0 M * 0.500 L
V2 = (3.0 M * 0.500L) / 19.0 M
V2 = 0.0789 L
We need 0.0789 L
This is 0.0789 * 10^3 mL = 78.9 mL
We need 78.9 mL of the 19.0 M NaOH solution
Moles of Hydrogen present: 100 / 2 = 50 moles
Moles of Nitrogen present: 200 / 28 = 7.14 moles
Hydrogen required by given amount of nitrogen = 7.14 x 3 = 21.42 moles
Hydrogen is excess so we will calculate the Ammonia produced using Nitrogen.
Molar ratio of Nitrogen : Ammonia = 1 : 2
Moles of ammonia = 7.14 x 2 = 14.28 moles
Bohr model is valid only for hydrogen and hydrogen-like species, but quantum mechanical model can explain all elements....
Answer:
Gay-Lussac's Law
Explanation:
The pressure is directly proportional to the absolute temperature under constant volume. This states the Gay-Lussac's law. The equation is:
P1T2 = P2T1
<em>Where P is pressure and T absolute temperature of 1, initial state and 2, final state of the gas.</em>
<em />
That means the right option is:
- Gay-Lussac's Law