Answer:
There are multiple ways to check mass but I'll tell you one. Look below
Explanation:
One easy way of checking atomic mass is by adding protons and neutrons.
For example:
We have 5 protons and 4 neutrons.
5+4=9
I hope this helps (:
Answer:
Newton's Cradle is a neat way to demonstrate the principle of the CONSERVATION OF MOMENTUM.
What happens here is when the ball on one end of the cradle is swung and it hits the other balls that are motionless, or stationary, the momentum of the swinging ball is transferred to the next ball upon impact.
Momentum is not lost in this action, what happens when it hits the next ball, the momentum is transferred to the next one, and then the next, and the the next, till it reaches the last ball on the other end. Since nothing is next to the last ball, it pushes the ball upwards, which will swing down and repeat the process going the other way.
This also demonstrates the CONSERVATION OF ENERGY. As you will see, the energy continues to move through the other balls, passing it from one ball to the other, which keeps this constantly moving.
Answer:
2Ag⁺ (aq) + 2OH⁻ (aq) → Ag₂O (s) + H₂O (l)
Explanation:
Step 1: RxN
2AgNO₃ + 2NaOH → Ag₂O + 2NaNO₃ + H₂O
Step 2: Define states of matter
2AgNO₃ (aq) + 2NaOH (aq) → Ag₂O (s) + 2NaNO₃ (aq) + H₂O (l)
Step 3: Total Ionic Equation
2Ag⁺ (aq) + 2NO₃⁻ (aq) + 2Na⁺ (aq) + 2OH⁻ (aq) → Ag₂O (s) + 2Na⁺ (aq) + 2NO₃⁻ (aq) + H₂O (l)
Step 4: Cancel out spectator ions
2Ag⁺ (aq) + 2OH⁻ (aq) → Ag₂O (s) + H₂O (l)
This is Bohrs model for potassium