Answer:
Your question is missing some information.
But in most of the systems, potential energy and kinetic energy are inversely proportional
Answer:
Weight is a 'force' and in the imperial system, it is measured in pounds-force (lbf or lbf). You might hear this term used together with the term 'slug'. A slug has a mass of 32.174049 lb.
Explanation:
Answer:
See explaination
Explanation:
1)
we know that
half cell with higher reduction potential is cathode
so
cathode :
N20 + 2H+ + 2e- ---> N2 + H20
anode :
Cr(s) ---> Cr+3 + 3e-
so
overall reaction is
3 N20 + 6H+ + 2 Cr ---> 3N2 + 3H20 + 2Cr+3
now
Eo cell = Eo cathode - Eo anode
so
EO cell = 1.77 + 0.74
Eo cell = 2.51 V
now
in this case
oxidizing agents are N20 and Cr+3
reducing agents are Cr and N2
higher the reduction potential , stronger the oxidizing agent
lower the reduction potential , stronger the reducing agent
so
oxidzing agents
N20 > Cr+3
reducing agents
Cr > N2
2)
cathode :
Au+ + e- --> Au
anode :
Cr ---> Cr+3 + 3e-
overall reaction
3Au+ + Cr ---> 3Au + Cr+3
Eo cell = 1.69 + 0.74
Eo cell = 2.43
now
oxidizing agents :
Au+ > Cr+3
reducing agents :
Cr > Au
3)
cathode :
N20 + 2H+ + 2e- ---> N2 + H20
andoe :
Au ---> Au+ + e-
overall
2 Au + N20 + 2H+ --> 2 Au+ + N2 + H20
Eo cell = 1.77 - 1.69
Eo cell = 0.08
oxidizing agents
N20 > Au+
reducing agents
Au > N2
D. quantitative data can be recorded.
Moles of Hydrogen present: 100 / 2 = 50 moles
Moles of Nitrogen present: 200 / 28 = 7.14 moles
Hydrogen required by given amount of nitrogen = 7.14 x 3 = 21.42 moles
Hydrogen is excess so we will calculate the Ammonia produced using Nitrogen.
Molar ratio of Nitrogen : Ammonia = 1 : 2
Moles of ammonia = 7.14 x 2 = 14.28 moles