Answer:
The correct option is C: 0.31 s.
Explanation:
When the mass is then suddenly released we have:
Where:
F is the force
k: is the spring constant
Δy: is the spring displacement
Since the tension in the spring is zero, the force is the weight:

Where:
m is the mass of the object
g is the gravity
(1)
The oscillation period of the spring is given by:
(2)
By solving equation (1) for "k" and entering into equation (2) we have:

Since the spring will osclliates in a position between the initial position (when it is at rest) and the final position (when the mass is released and reaches the bottom), we have Δy = 2.5 cm = 0.025 m:
Hence, the oscillation period is 0.31 s.
The correct option is C: 0.31s.
I hope it helps you!
(a) 
The radiation pressure exerted by an electromagnetic wave on a surface that totally absorbs the radiation is given by

where
I is the intensity of the wave
c is the speed of light
In this problem,

and substituting
, we find the radiation pressure

(b) 
Since we know the cross-sectional area of the laser beam:

starting from the radiation pressure found at point (a), we can calculate the force exerted on a tritium atom:

And then, since we know the mass of the atom

we can find the acceleration, by using Newton's second law:

To solve this problem it is necessary to take into account the kinematic equations of motion and the change that exists in the volume flow.
By definition the change in speed is given by

Where,
x= distance
final velocity
initial velocity
a = acceleration
On the other hand we know that the flow of a fluid is given by

Where,
A = Area
v = Velocity
PART A )
Applying this equation to the previously given values we have to




Therefore the velocity of the water leaving the hole is 17.48m/s
PART B )
In the case of the hole we take the area of a circle, therefore replacing in the flow equation we have to,





The diameter is 2 times the radius, then is
m or 1.91mm
<em>Note: The rate flow was converted from minutes to seconds.</em>
Density is a value for mass, such as kg, divided by a value for volume, such as m3. Density is a physical property of a substance that represents the mass of that substance per unit volume. We calculate density as follows:
density = mass / volume
density = 65.3 g / π(1.75/2 cm)^2 ( 3.23 cm )
density = 8.41 g/cm^3

i don't know what symbol ya'll use for wavelength so i just put the word instead.We use the greek symbol lambda.So just plug in everything you know.
wavelength=4.257×10^-7x10^-2 and
v=speed of light = 3×10^8
So you should get f= 7.04 ×10^15Hz