Answer:
The distance is 
Explanation:
From the question we are told that
The wavelength of the light is 
The distance between the slit is 
The between the first and second dark fringes is 
Generally fringe width is mathematically represented as

Where D is the distance of the slit to the screen
Hence

substituting values


Answer:

Explanation:
Assuming no energy lost, according to the law of conservation of energy, the kinetic energy of the automobile becomes potential energy after the crash:

Here m is the automobile's mass, v is the speed of the car before impact, k is the "bumper" constant and x is the compression of the bumper due to the collision. Solving for v:

Answer:
a) a = 34.375 m / s², b) v_f = 550 m / s
Explanation:
This problem is the launch of projectiles, they tell us to ignore the effect of the friction force.
a) Let's start with the final part of the movement, which is carried out from t= 16 s with constant speed
v_f =
we substitute the values
v_f =
The initial part of the movement is carried out with acceleration
v_f = v₀ + a t
x₁ = x₀ + v₀ t + ½ a t²
the rocket starts from rest v₀ = 0 with an initial height x₀ = 0
x₁ = ½ a t²
v_f = a t
we substitute the values
x₁ = 1/2 a 16²
x₁ = 128 a
v_f = 16 a
let's write our system of equations
v_f =
x₁ = 128 a
v_f = 16 a
we substitute in the first equation
16 a =
16 4 a = 6600 - 128 a
a (64 + 128) = 6600
a = 6600/192
a = 34.375 m / s²
b) let's find the time to reach this height
x = ½ to t²
t² = 2y / a
t² = 2 5100 / 34.375
t² = 296.72
t = 17.2 s
We can see that for this time the acceleration is zero, so the rocket is in the constant velocity part
v_f = 16 a
v_f = 16 34.375
v_f = 550 m / s