Answer:
F
Step-by-step explanation:
because 1 dozen cost $1
Given that the perimeter of rhombus ABCD is 20 cm, the length of the sides will be:
length=20/4=5 cm
the ratio of the diagonals is 4:3, hence suppose the common factor on the diagonals is x such that:
AC=4x and BD=3x
using Pythagorean theorem, the length of one side of the rhombus will be:
c^2=a^2+b^2
substituting our values we get:
5²=(2x)²+(1.5x)²
25=4x²+2.25x²
25=6.25x²
x²=4
x=2
hence the length of the diagonals will be:
AC=4x=4×2=8 cm
BD=3x=3×2=6 cm
Hence the area of the rhombus wll be:
Area=1/2(AC×BD)
=1/2×8×6
=24 cm²
0.963=0.96 rounded to the nearest hundredth
<span />
I'm sure there's an easier way of solving it than the way I did, but I'm not sure what it could be. Never dealt with a problem like this before.
Anyway, I just plugged in and tested. Chose random values for a, b, c, and d, which follow the rule 0 < a < b < c < d:
a = 1
b = 2
c = 3
d = 4


Simplify into standard form:



Use the quadratic formula to solve:

For functions in the form of

. So in this case:
a = 1
b = -4
c = 2
Plug them in:

Solve for 'x':




So the answer would be A.